build.prop tweaks - HTC Wildfire S

hello folks...
can anybody suggest or provide some build.prop tweaks for longer battery life..

kantry123 said:
hello folks...
can anybody suggest or provide some build.prop tweaks for longer battery life..
Click to expand...
Click to collapse
Here are the main ones.
Code:
# Time between Access Points scans
# Increase seconds to minimize battery drain
wifi.supplicant_scan_interval = 180
# LCD Brightness Setting Default is 143
settings.display.brightness = 120
# ARM11 Sleep Mode
# 0 = Power Collapse Suspend
# 1 = Power Collapse
# 2 = Apps Sleep
# 3 = Slow Clock and Wait for Interrupt
# 4 = Wait for Interrupt
pm.sleep_mode = 1
# HSDPA Low Throughput
ro.ril.disable.power.collapse = 0

Tera Tike said:
Here are the main ones.
Code:
# Time between Access Points scans
# Increase seconds to minimize battery drain
wifi.supplicant_scan_interval = 180
# LCD Brightness Setting Default is 143
settings.display.brightness = 120
# ARM11 Sleep Mode
# 0 = Power Collapse Suspend
# 1 = Power Collapse
# 2 = Apps Sleep
# 3 = Slow Clock and Wait for Interrupt
# 4 = Wait for Interrupt
pm.sleep_mode = 1
# HSDPA Low Throughput
ro.ril.disable.power.collapse = 0
Click to expand...
Click to collapse
thanks for ur reply...
but will it work with HTC wildfire s a510e(GSM)...?

kantry123 said:
thanks for ur reply...
but will it work with HTC wildfire s a510e(GSM)...?
Click to expand...
Click to collapse
Yes.

On average how much longer has this increased battery life ?
Sent from my HTC_A510c using XDA App

junxracr said:
On average how much longer has this increased battery life ?
Sent from my HTC_A510c using XDA App
Click to expand...
Click to collapse
On one phone with data, wifi, bluetooth and sync enabled get about two days plus. On the other one with just the phone on I get about 4 plus days. So it will vary...

Thank you I'll give it a try.
Sent from my HTC_A510c using XDA App

I'm bumping this - anybody else got any other interesting tweaks?
Sent from my Wildfire S A510e using xda premium

To help with touch responsiveness...
CHANGE:
Code:
view.touch_slop = 2
ADD:
Code:
# Force Launcher into Memory
ro.HOME_APP_ADJ = 1
# Enable Graphic Processor Unit
debug.sf.hw = 1
# Improve Overall Touch Responsiveness
debug.performance.tuning = 1
video.accelerate.hw = 1
# Improve Scrolling Responsiveness
windowsmgr.max_events_per_sec = 150

Tera Tike said:
To help with touch responsiveness...
CHANGE:
Code:
view.touch_slop = 2
ADD:
Code:
# Force Launcher into Memory
ro.HOME_APP_ADJ = 1
# Enable Graphic Processor Unit
debug.sf.hw = 1
# Improve Overall Touch Responsiveness
debug.performance.tuning = 1
video.accelerate.hw = 1
# Improve Scrolling Responsiveness
windowsmgr.max_events_per_sec = 150
Click to expand...
Click to collapse
thanks but would u suggest any thing with max and min fling velocity..?

kantry123 said:
thanks but would u suggest any thing with max and min fling velocity..?
Click to expand...
Click to collapse
For me not really, the Minimum fling velocity is measured by the number of pixels your finger traveled per second.
You can lower the view.minimum_fling_velocity = 15 to speed up scrolling.
I would not even set the maximum velocity as the screen is to small for it to be effective.

Tera Tike said:
For me not really, the Minimum fling velocity is measured by the number of pixels your finger traveled per second.
You can lower the view.minimum_fling_velocity = 15 to speed up scrolling.
I would not even set the maximum velocity as the screen is to small for it to be effective.
Click to expand...
Click to collapse
thank u so much for ur valuable answer...!
but can u clarify my doubt..??
below i'm posting some tweaks will that work on wfs.?
ro.mot.eri.losalert.delay=1000
ro.max.fling_velocity=12000
ro.min.fling_velocity=8000
ro.telephony.call_ring.delay=0
ro.lge.proximity.delay=25
mot.proximity.delay=25
dalvik.vm.dexopt-flags=m=v,o=y
persist.sys.purgeable_assets=1
ro.config.hw_fast_dormancy=1
persist.sys.shutdown.mode = hibernate
ro.config.hw_power_saving=true
debug.kill_allocating_task=0
debug.qctwa.statusbar=1 (qualcomm device specific)
debug.qctwa.preservebuf=1 (qualcomm device specific)
debug.qc.hardware=true (qualcomm device specific)
com.qc.hardware=true (qualcomm device specific)
plz.z..z won't mind if i have botherd u but.. seriously i'm in need of those tweaks..??

kantry123 said:
thank u so much for ur valuable answer...!
but can u clarify my doubt..??
below i'm posting some tweaks will that work on wfs.?
ro.mot.eri.losalert.delay=1000
ro.max.fling_velocity=12000
ro.min.fling_velocity=8000
ro.telephony.call_ring.delay=0
ro.lge.proximity.delay=25
mot.proximity.delay=25
dalvik.vm.dexopt-flags=m=v,o=y
persist.sys.purgeable_assets=1
ro.config.hw_fast_dormancy=1
persist.sys.shutdown.mode = hibernate
ro.config.hw_power_saving=true
debug.kill_allocating_task=0
debug.qctwa.statusbar=1 (qualcomm device specific)
debug.qctwa.preservebuf=1 (qualcomm device specific)
debug.qc.hardware=true (qualcomm device specific)
com.qc.hardware=true (qualcomm device specific)
plz.z..z won't mind if i have botherd u but.. seriously i'm in need of those tweaks..??
Click to expand...
Click to collapse
Here is the list of what I am using...
Code:
# View configuration for QVGA
ro.min.fling_velocity=10
# Decrease Dialing Delay
ro.telephony.call_ring.delay = 0
# Fix Blackscreen Issue after Call
ro.lge.proximity.delay = 5
mot.proximity.delay = 5
# Dalvik Cache Settings
dalvik.vm.dexopt-flags = v=n,o=a,u=y
# Application Not Responding Timeout
keydispatchtimeout = 15000
# Qualcomm UI Tweaks
debug.qctwa.preservebuf = 1
debug.qc.hardware = true
# Improves Radio Signal
ro.config.hw_fast_dormancy = 1
I would not use these as they was not needed, degraded or bootlooped my device.
Code:
# Maximum Velocity to Initiate a Fling (measured pixels per second)
ro.max.fling_velocity = 12000
# Cellular Tower Reconnect Delay (Made Hotspot Mode Unstable)
ro.mot.eri.losalert.delay = 1000
# Purge Memory Cache Memory on reboot (UI already does that)
persist.sys.purgeable_assets = 1
# Dalvik Cache Settings (degraded performance)
dalvik.vm.dexopt-flags=m=v,o=y
# Disable Graphic Dithering (default setting)
persist.sys.use_dithering = 0
# Power Off Mode Hibernate
persist.sys.shutdown.mode = hibernate
# Enable Hardware Power Savings (not supported)
ro.config.hw_power_saving = true
# Enhanced Operator Name String
persist.cust.tel.eons = 1
# Disable Task Killing
debug.kill_allocating_task = 0
# Qualcomm UI Tweaks (Made no differance)
debug.qctwa.statusbar = 1
com.qc.hardware = true

Related

[ROM][JB] CM10 Mr. Jun 08/01 GB Kernal(Quarx 07/30 base)

Hello all defy users. I found this rom on the mfunz site, after many google translate usages :laugh:
This is a cherry pick of Quarx's excellent work on JB for our beloved Defy/Defy+ phones.
Mr. Jun did excellent work on CM 9 picks previously. All credit goes to him for his added work to Quarx's build.
Link to site for reference
http://bbs.mfunz.com/forum.php?mod=viewthread&tid=564498
This will only work on Defy(bayer lens)/Defy+ if you want the camera to work correctly.
These are the changes I got from Google Translate.
Q large Defy + on the 30th version of the CM10 Amendment, use CM2.3.3/CH2.3.4 kernel
- For all BL levels of DEFY + to DEFY use, but before the Brush carefully to see posts.
= Completion, including the camera, alarm clock and other details of the finished, the system finished 100%
= Correction button brightness setting options in FC
= Modified kernel boot file
= Correction into the drawer menu will appear when the sawtooth
= Fixed long Caton appears BUG
= Exclude option on the phone FC
= Integrated RE Manager V2.2
= Integration 4.1.1 Advanced Settings
= Integrated the MOTO native input method
= Integrated MotoInspired_v1.5 topic
= The integration ApexLauncher1.2.5 Desktop
= Integrated the power vested with the operators
= Integration of third-generation Sony Bravia Engine Engine
= Streamlining of redundant language pack, fan the English West
= CM wallpaper streamline useless APK
= Adjust the SD cache 2048
= Adjustment of the global touch responsiveness
= Adjusted scroll up and down the FPS values
= Adjust the system's smooth scrolling
= Adjustment of the open / close the window speed of the fastest
= Adjusted deeper sleep system, substantial savings to the standby power consumption
= Open zipalign alignment
= On the pmwcachecleaner function
= Open desktop acceleration module supports
= Optimization WIFI scanning speed, power-based
= Optimal WIFI, the GPS up and down the line speed
= To optimize the startup time
= Optimize the standby release more memory
= Optimized TCP / IP data buffer
= Optimize boot to restart the speed
= V6 supercharger scripting support
= Embedded in the latest 4.0 memory management mechanism
= Modify the minfree value, memory allocation is more reasonable
= Start mandatory increase in memory
= Black against dial-up and delay
= Disable CyanogenMod Statistics
= Disable 2D, 3D threshold ceiling
= Disable kernel debugger error diary
= Modified boot the default time zone
= Modified ApexLauncher of desktop decline gesture, menu options
= Modified Brush script automatically cleared
= Harmony of a large number of icons, lock screen, search button
= Added SMS pop-up settings to CM
= Support pop-up a custom contact SMS
= Added call recording to CM settings
= Support two-way call recording function
= Join the power-saving fine-tuning, battery optimization script
= Default CPU FM mode (not recommended for replacement)
= DroidXGoveors SIO kernel scheduling
I have tested it for all day, and it is smoother and faster than Quarx's 30th build.
Once again thanks to Quarx, Epslyon3, and Maniac103 for all their continued support of CM for Defy.
LInks for downloads
https://www.dropbox.com/sh/m0chnwrogq9lha4/J0TKFJhn4s
https://docs.google.com/open?id=0B6jmUw-d1AcTTG9ZVkdDVkF0amc
Very, very fast!
Lightning fast ROM, seems stable but has one annoying thing: Some apps are in Chinese, including the Root Explorer and CallRecorder which comes with it.(Even when I chose English in System Settings)
I "ported" the build.prop tweaks to new Quarx CM10 08/02 and found out it's pretty fast too without the thing that I mentioned before - annoying, for me.
Worth to mention that Mr. Jun one is slightly faster.
WalaceW7 said:
Lightning fast ROM, seems stable but has one annoying thing: Some apps are in Chinese, including the Root Explorer and CallRecorder which comes with it.(Even when I chose English in System Settings)
I "ported" the build.prop tweaks to new Quarx CM10 08/02 and found out it's pretty fast too without the thing that I mentioned before - annoying, for me.
Worth to mention that Mr. Jun one is slightly faster.
Click to expand...
Click to collapse
Q large=Quarx:laugh:

build.prop TWEAKS [updated]

[Mannual Way]
For editing build.prop you'll need a root enabled file explorer i used ES file explorer.
---------------------------------------------------------------------------------------
# MEDIA TWEAKS-----------------
media.stagefright.enable-player=true
media.stagefright.enable-meta=true
media.stagefright.enable-scan=true
media.stagefright.enable-http=true
media.stagefright.enable-rtsp=true
media.stagefright.enable-record=true
# photo/video quality
ro.media.enc.jpeg.quality=100
ro.media.enc.hprof.vid.bps=8000000 #control video bitrate (stock cam app only)
# MISCELLANEOUS TWEAKS-----------------
wifi.supplicant_scan_interval=180
#If you don’t keep Wi-Fi active, lowering the value below the default of 90 seems to make Wi-Fi connect faster after being turned on. But it will consume more power if turning Wi-Fi off has been forgotten when not in range of a known network.
windowsmgr.max_events_per_sec=90 #This number equates to the refresh rate * 1.5 Android maxes at 60fps. Max value is already set to 90.
# faster Scrolling
ro.max.fling_velocity=12000
ro.min.fling_velocity=8000
# improve voice call clarity
ro.ril.enable.amr.wideband=1
# disable error checking
ro.kernel.android.checkjni=0
ro.kernel.checkjni=0
# disable logcat
logcat.live=disable
# faster youtube?
ro.ril.hep=0
# Faster boot
persist.sys.shutdown.mode=hibernate
# disable animation for faster startup
#debug.sf.nobootanimation=1
# does not need to be on if not a dev
persist.android.strictmode=0
# disable USB debugging icon from status bar
persist.adb.notify=0
#HARDWARE RELATED TWEAKS-----------------
# Render graphics with GPU&CPU
#debug.composition.type=CPU
#debug.composition.type=GPU
# Qualcomm display settings
debug.qctwa.statusbar=1
debug.qctwa.preservebuf=1
com.qc.hardware=true
# BATTERY SAVING-----------------
ro.ril.disable.power.collapse=1
ro.mot.eri.losalert.delay=1000 #smooths out network disconnects. breakes tethering in CM7.
ro.config.nocheckin=1 #disable sending usage data to google
# sleep modes
pm.sleep_mode=2
#usage:
#pm.sleep_mode=0 -> collapse suspend
#pm.sleep_mode=1 -> collapse (will totally power off the cpu)
#pm.sleep_mode=2 -> sleep (cpu is still on, but put into low power mode (registers are still saved)
#pm.sleep_mode=3 -> slow Clock and Wait for Interrupt (lowered frequency and voltage)
#pm.sleep_mode=4 -> wait for interrupt (no change in cpu clock or voltage)
----------------------------------------------
[Flash Method]
Download the zip file from the attachment.
Place it in the root of sdcard.
Boot your phone in recovery mode. [up volume+power] or [up volume+power+home]
Select option flash from .zip file.
Browse to the file.
FLASH. REBOOT..
DONE!!
Hello can any one give me the original build.prop file for coolpad dazen 1 please, i have deleted unfortunately and my phone is not working properly. Please anyone help me.

[KERNEL][INTL][TW5.0][06/22/2015] KT-SGS6 - OE3 - KTweaker

Ktoonsez presents:
{
"lightbox_close": "Close",
"lightbox_next": "Next",
"lightbox_previous": "Previous",
"lightbox_error": "The requested content cannot be loaded. Please try again later.",
"lightbox_start_slideshow": "Start slideshow",
"lightbox_stop_slideshow": "Stop slideshow",
"lightbox_full_screen": "Full screen",
"lightbox_thumbnails": "Thumbnails",
"lightbox_download": "Download",
"lightbox_share": "Share",
"lightbox_zoom": "Zoom",
"lightbox_new_window": "New window",
"lightbox_toggle_sidebar": "Toggle sidebar"
}
​
KT-SGS6 kernel features
•Must have a S6 model G920F and G920I and G920S and G920T and G920W8 and G925F and G925I and G925S and G925T and G925W8
•Samsung open source
•Optimized kernel configuration
•unsecure root adb
•Voltage interface
•Over Clocking
•Under Clocking
•KTweaker app for kernel control
•KTweaker Widgets
•KTmonitor app to watch your cpu cores current speed
Click to expand...
Click to collapse
KTweaker Shop and profile help, plus previous versions can be seen here (thanks to LuigiBull23):
http://forum.xda-developers.com/tmo...nel-kt-sgs6-builds-variants-ktweaker-t3107867
Touchwiz Lollipop 5.0 VERSION:
06.22.2015: http://bit.ly/1Jf6B2n
Click to expand...
Click to collapse
Sources can be found here:
https://github.com/ktoonsez/KTSGS6
What you can expect to get benchmark wise with a good CPU OC'd:
Go to my original thread to view Change logs:
http://forum.xda-developers.com/showpost.php?p=60180784&postcount=2
ktoonservative explained:
Any item with the word cycle in it refers to how many sampling_rate's have occured. A 22 ruffly equates to 1 second for a sampling_rate of 45000
block_cycles_offline_screen_off =1
How many sampling_rate cycles need to occur before a core is allowed to go OFFLINE while the screen is OFF.
block_cycles_offline_screen_on = 11
How many sampling_rate cycles need to occur before a core is allowed to go OFFLINE while the screen is ON.
block_cycles_online_screen_off = 11
How many sampling_rate cycles need to occur before a core is allowed to go ONLINE while the screen is OFF.
block_cycles_online_screen_on = 3
How many sampling_rate cycles need to occur before a core is allowed to go ONLINE while the screen is ON.
block_cycles_raise_screen_off = 11
How many sampling_rate cycles need to occur before the current Mhz is allowed to be raised while the screen is OFF.
block_cycles_raise_screen_on = 3
How many sampling_rate cycles need to occur before the current Mhz is allowed to be raised while the screen is ON.
button_boost_screen_off_core_1 = 1
When this item is a 1, it will turn on the core #1 when a button any hard button is pressed while the screen is OFF. 0 leaves the core in its current state.
button_boost_screen_on_core_1 = 1
When this item is a 1, it will turn on the core #1 when a button any hard button is pressed while the screen is ON. 0 leaves the core in its current state.
button_boost_screen_off_core_2 = 1
When this item is a 1, it will turn on the core #2 when a button any hard button is pressed while the screen is OFF. 0 leaves the core in its current state.
button_boost_screen_on_core_2 = 1
When this item is a 1, it will turn on the core #2 when a button any hard button is pressed while the screen is ON. 0 leaves the core in its current state.
button_boost_screen_off_core_3 = 1
When this item is a 1, it will turn on the core #3 when a button any hard button is pressed while the screen is OFF. 0 leaves the core in its current state.
button_boost_screen_on_core_3 = 1
When this item is a 1, it will turn on the core #3 when a button any hard button is pressed while the screen is ON. 0 leaves the core in its current state.
button_boost_screen_off_core_4 = 1
When this item is a 1, it will turn on the core #4 when a button any hard button is pressed while the screen is OFF. 0 leaves the core in its current state.
button_boost_screen_on_core_4 = 1
When this item is a 1, it will turn on the core #4 when a button any hard button is pressed while the screen is ON. 0 leaves the core in its current state.
button_boost_screen_off_core_5 = 1
When this item is a 1, it will turn on the core #5 when a button any hard button is pressed while the screen is OFF. 0 leaves the core in its current state.
button_boost_screen_on_core_5 = 1
When this item is a 1, it will turn on the core #5 when a button any hard button is pressed while the screen is ON. 0 leaves the core in its current state.
button_boost_screen_off_core_6 = 1
When this item is a 1, it will turn on the core #6 when a button any hard button is pressed while the screen is OFF. 0 leaves the core in its current state.
button_boost_screen_on_core_6 = 1
When this item is a 1, it will turn on the core #6 when a button any hard button is pressed while the screen is ON. 0 leaves the core in its current state.
button_boost_screen_off_core_7 = 1
When this item is a 1, it will turn on the core #7 when a button any hard button is pressed while the screen is OFF. 0 leaves the core in its current state.
button_boost_screen_on_core_7 = 1
When this item is a 1, it will turn on the core #7 when a button any hard button is pressed while the screen is ON. 0 leaves the core in its current state.
boost_hold_cycles = 22
How many sampling_rate cycles need to occur before going out of CPU/GPU boost mode
cpu_load_adder_at_max_gpu = 0
When set to higher than zero, this will add to the actual CPU load to create a perceived higher load when an app is using alot of GPU but not CPU.
cpu_load_adder_at_max_gpu_ignore_tb = 0
When set to 1, this will ignore cpu_load_adder_at_max_gpu during touch/button boost. When set to 0 cpu_load_adder_at_max_gpu will be used all the time.
disable_hotplug = 0
When this item is a 1, it disables hotplugging so all cores stay on full time. 0 lets all cores turn on and off when needed.
disable_hotplug_bt = 0
When this item is a 1, it disables hotplugging so all cores stay on full time while paired to a bluetooth device and doing bluetooth activities like playing music, transfering files.... 0 doesn't do anything extra to the cores when doing bluetooth functions.
disable_hotplug_chrg = 0
When this item is a 1, it disables hotplugging so all cores stay on full time while charging the device. 0 doesn't do anything extra to the cores while charging.
disable_hotplug_media = 0
When this item is a 1, it disables hotplugging so all cores stay on full time while playing music or movies. 0 doesn't do anything extra to the cores while music or movies are playing.
down_threshold_screen_off = 52
A percentage of CPU utilization that needs to occur before the current Mhz begins to lower while screen is OFF.
down_threshold_screen_off_hotplug_1 = 40
A percentage of CPU utilization that needs to occur before the core #1 is taken offline while screen is OFF.
down_threshold_screen_off_hotplug_2 = 45
A percentage of CPU utilization that needs to occur before the core #2 is taken offline while screen is OFF.
down_threshold_screen_off_hotplug_3 = 50
A percentage of CPU utilization that needs to occur before the core #3 is taken offline while screen is OFF.
down_threshold_screen_off_hotplug_4 = 55
A percentage of CPU utilization that needs to occur before the core #4 is taken offline while screen is OFF.
down_threshold_screen_off_hotplug_5 = 60
A percentage of CPU utilization that needs to occur before the core #5 is taken offline while screen is OFF.
down_threshold_screen_off_hotplug_6 = 65
A percentage of CPU utilization that needs to occur before the core #6 is taken offline while screen is OFF.
down_threshold_screen_off_hotplug_7 = 70
A percentage of CPU utilization that needs to occur before the core #7 is taken offline while screen is OFF.
down_threshold_screen_on = 52
A percentage of CPU utilization that needs to occur before the current Mhz begins to lower while screen is ON.
down_threshold_screen_on_hotplug_1 = 35
A percentage of CPU utilization that needs to occur before the core #1 is taken offline while screen is ON.
down_threshold_screen_on_hotplug_2 = 40
A percentage of CPU utilization that needs to occur before the core #2 is taken offline while screen is ON.
down_threshold_screen_on_hotplug_3 = 45
A percentage of CPU utilization that needs to occur before the core #3 is taken offline while screen is ON.
down_threshold_screen_on_hotplug_4 = 50
A percentage of CPU utilization that needs to occur before the core #4 is taken offline while screen is ON.
down_threshold_screen_on_hotplug_5 = 55
A percentage of CPU utilization that needs to occur before the core #5 is taken offline while screen is ON.
down_threshold_screen_on_hotplug_6 = 60
A percentage of CPU utilization that needs to occur before the core #6 is taken offline while screen is ON.
down_threshold_screen_on_hotplug_7 = 65
A percentage of CPU utilization that needs to occur before the core #7 is taken offline while screen is ON.
freq_step_lower_screen_off = 8
How many steps from the Mhz table (the entire Mhz table can bee seen in the CPU Voltage screen) it skips when lowering the current Mhz while the screen is OFF.
freq_step_lower_screen_on = 2
How many steps from the Mhz table (the entire Mhz table can bee seen in the CPU Voltage screen) it skips when lowering the current Mhz while the screen is ON.
freq_step_raise_screen_off = 1
How many steps from the Mhz table (the entire Mhz table can bee seen in the CPU Voltage screen) it skips when raising the current Mhz while the screen is OFF.
freq_step_raise_screen_on = 5
How many steps from the Mhz table (the entire Mhz table can bee seen in the CPU Voltage screen) it skips when raising the current Mhz while the screen is ON.
ignore_nice_load = 0
If this value is 1, the system will ignore "Nice" processes when deciding to scale up or down. Nice processes are used by the IO scheduler to designate a low-priority process. Ignore nice load basically tells a governor to disregard processes with higher nice values.
lockout_hotplug_screen_off_core_1 = 0
This is a 3 way option. While the screen is OFF, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_on_core_1 = 0
This is a 3 way option. While the screen is ON, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_off_core_2 = 0
This is a 3 way option. While the screen is OFF, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_on_core_2 = 0
This is a 3 way option. While the screen is ON, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_off_core_3 = 0
This is a 3 way option. While the screen is OFF, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_on_core_3 = 0
This is a 3 way option. While the screen is ON, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_off_core_4 = 0
This is a 3 way option. While the screen is OFF, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_on_core_4 = 0
This is a 3 way option. While the screen is ON, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_off_core_5 = 0
This is a 3 way option. While the screen is OFF, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_on_core_5 = 0
This is a 3 way option. While the screen is ON, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_off_core_6 = 0
This is a 3 way option. While the screen is OFF, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_on_core_6 = 0
This is a 3 way option. While the screen is ON, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_off_core_7 = 0
This is a 3 way option. While the screen is OFF, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_on_core_7 = 0
This is a 3 way option. While the screen is ON, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_changes_when_boosting = 0
If this value is 1, all CPU changes to all cores will be ignored while executing a touch/button boost. If 0 all cores will be allowed to scale and hotplug.
no_extra_cores_screen_off = 1
When set to a 1, this option keeps all extra CPU cores offline while the screen is OFF. 0 lets it hotplug them on and off as needed
sampling_rate = 45000
The amount of milliseconds that the governor will analyze the CPU usage and adjust for changes in load while the screen is ON.
sampling_rate_min = 10000
READ-ONLY value that specifies the lower value that "sampling_rate" and "sampling_rate_screen_off" will accept.
sampling_rate_screen_off = 45000
The amount of milliseconds that the governor will analyze the CPU usage and adjust for changes in load while the screen is OFF.
super_conservative_screen_off = 0
With the screen OFF: When set to a 1, this option will explicitly obey your block cycles settings to be a super battery saver (Setting a 1 will slow down the UI a little bit). When set to a 0 it uses fuzzy logic on the "block cycle" items.
super_conservative_screen_on = 0
With the screen ON: When set to a 1, this option will explicitly obey your block cycles settings to be a super battery saver (Setting a 1 will slow down the UI a little bit). When set to a 0 it uses fuzzy logic on the "block cycle" items to create a smooooooth UI experience.
touch_boost_cpu_cl0 = 1200000
The Mhz that you want the online CPU's to jump to when the screen is touched for the the LITTLE CPU (Cluster 0).
touch_boost_cpu_cl1 = 1600000
The Mhz that you want the online CPU's to jump to when the screen is touched for the the BIG CPU (Cluster 1).
touch_boost_core_1 = 1
When set to a 1, this option turns on the core #1 when the screen is touched. When set to a 0 it doesn't do anything extra to the cores.
touch_boost_core_2 = 1
When set to a 1, this option turns on the core #2 when the screen is touched. When set to a 0 it doesn't do anything extra to the cores.
touch_boost_core_3 = 0
When set to a 1, this option turns on the core #3 when the screen is touched. When set to a 0 it doesn't do anything extra to the cores.
touch_boost_core_4 = 0
When set to a 1, this option turns on the core #4 when the screen is touched. When set to a 0 it doesn't do anything extra to the cores.
touch_boost_core_5 = 0
When set to a 1, this option turns on the core #5 when the screen is touched. When set to a 0 it doesn't do anything extra to the cores.
touch_boost_core_6 = 0
When set to a 1, this option turns on the core #6 when the screen is touched. When set to a 0 it doesn't do anything extra to the cores.
touch_boost_core_7 = 0
When set to a 1, this option turns on the core #7 when the screen is touched. When set to a 0 it doesn't do anything extra to the cores.
touch_boost_gpu = 424
This value specifies what Mhz the GPU should jump to when the screen is touched.
up_threshold_screen_off = 57
A percentage of CPU utilization that needs to occur before the current Mhz begins to raise while screen is OFF.
up_threshold_screen_off_hotplug_1 = 55
A percentage of CPU utilization that needs to occur before the core #1 is put online while screen is OFF.
up_threshold_screen_off_hotplug_2 = 60
A percentage of CPU utilization that needs to occur before the core #2 is put online while screen is OFF.
up_threshold_screen_off_hotplug_3 = 65
A percentage of CPU utilization that needs to occur before the core #3 is put online while screen is OFF.
up_threshold_screen_off_hotplug_4 = 70
A percentage of CPU utilization that needs to occur before the core #4 is put online while screen is OFF.
up_threshold_screen_off_hotplug_5 = 75
A percentage of CPU utilization that needs to occur before the core #5 is put online while screen is OFF.
up_threshold_screen_off_hotplug_6 = 80
A percentage of CPU utilization that needs to occur before the core #6 is put online while screen is OFF.
up_threshold_screen_off_hotplug_7 = 85
A percentage of CPU utilization that needs to occur before the core #7 is put online while screen is OFF.
up_threshold_screen_on = 57
A percentage of CPU utilization that needs to occur before the current Mhz begins to raise while screen is ON.
up_threshold_screen_on_hotplug_1 = 50
A percentage of CPU utilization that needs to occur before the core #1 is put online while screen is ON.
up_threshold_screen_on_hotplug_2 = 55
A percentage of CPU utilization that needs to occur before the core #2 is put online while screen is ON.
up_threshold_screen_on_hotplug_3 = 60
A percentage of CPU utilization that needs to occur before the core #3 is put online while screen is ON.
up_threshold_screen_on_hotplug_4 = 60
A percentage of CPU utilization that needs to occur before the core #4 is put online while screen is ON.
up_threshold_screen_on_hotplug_5 = 60
A percentage of CPU utilization that needs to occur before the core #5 is put online while screen is ON.
up_threshold_screen_on_hotplug_6 = 60
A percentage of CPU utilization that needs to occur before the core #6 is put online while screen is ON.
up_threshold_screen_on_hotplug_7 = 60
A percentage of CPU utilization that needs to occur before the core #7 is put online while screen is ON.
Touchwiz Lollipop 5.0 VERSION:
04.19.2015: http://bit.ly/1D1onyj
Click to expand...
Click to collapse
Change Log 04.19.2015
1. First build, things are just getting started
2. Min/Max will look weird upon open KTweaker the first time, just slide the Min and Max bars to what you want, this is only setup for the SMALL CPU.
3. So far you can only control the SMALL CPU which is the cpu that ranges from 400-1500Mhz
4. Control over Scheduler.
5. Control over governor for SMALL CPU.
6. Kernel is setup for SELInux Permissive
7. Lots of dmesg spam removed.
8. Dont bother setting other items in KTweaker just yet since things are just getting started.
9. As with all custom kernels since the S4, you may need to find "securestorage" line in build.prop and change from true to a false if you have trouble with wifi remembering your password after reboots.
10. If you have trouble with S-Health after installing custom kernels, Force Stop it and clear cache/data for the app, that will usually take care of it.
11. Please post a "dmesg" after running the kernel for 10-15 minutes and you have let the phone go into deep sleep at least once so I can remove more dmesg spam.
12. ENJOY the awesome!!!!!!!!!!!!!!!
13. All other G920 variants are welcome to try but G920F is the only one I have confirmation of so far.
14. No this will NOT work on any of the G925 variants since its a totally different device.
Awesome! One more reason for me to get the GS6 when it's available here.
Great and thanks for starting.
Sent from my SM-G920F
Sweet! A kernel already I was wondering about the max clock showing just 1.5 ghz instead of 2.1. It seems that way on stock too already. Surprisingly it actually seemed to hold a lower speed cap I set @ 1296 mhz. Usually stock is like screw you hippie, I do what I want. lol.
I'll give it a try in a day or two on my G920T Tmobile. I have to make a backup first.
Just flashed on my G920W8 and will confirm for those hesitant to flash that deep sleep is happening. Editing securestorage to false is needed to bring back wifi remembering on boot
Edit: No call audio >.>
mrapp said:
Just flashed on my G920W8 and will confirm for those hesitant to flash that deep sleep is happening. Editing securestorage to false is needed to bring back wifi remembering on boot
Edit: No call audio >.>
Click to expand...
Click to collapse
Try the one in the tmobile section and let me know.
ktoonsez said:
Try the one in the tmobile section and let me know.
Click to expand...
Click to collapse
Just realized you posted a T variant right before you posted. The T variant is tested and works perfectly with deep sleep and call audio on my W8
mrapp said:
Just realized you posted a T variant right before you posted. The T variant is tested and works perfectly with deep sleep and call audio on my W8
Click to expand...
Click to collapse
Awesome, I will add W8 to the OP as compatible.
Got any plans to make a sprint compatible version?
nflwideout86 said:
Got any plans to make a sprint compatible version?
Click to expand...
Click to collapse
Had 1 for 2 weeks now but you guys have no deep sleep with custom recovery or root or when you flash a kernel so I saw no point in it
ktoonsez said:
Had 1 for 2 weeks now but you guys have no deep sleep with custom recovery or root or when you flash a kernel so I saw no point in it
Click to expand...
Click to collapse
Hmm...we have deep sleep now since samsung finally released our stock firmware......? Personally i have trwp with deep sleep.
nflwideout86 said:
Hmm...we have deep sleep now since samsung finally released our stock firmware......? Personally i have trwp with deep sleep.
Click to expand...
Click to collapse
You also need root or KTweaker wont work. Ill PM u a link, your welcome to try.
ktoonsez said:
You also need root or KTweaker wont work. Ill PM u a link, your welcome to try.
Click to expand...
Click to collapse
Awesome man i'll try it out. I rooted with the tmo auto root and it seems to be working so far, all my other root apps work as they should
---------- Post added at 11:00 PM ---------- Previous post was at 10:12 PM ----------
ktoonsez said:
You also need root or KTweaker wont work. Ill PM u a link, your welcome to try.
Click to expand...
Click to collapse
So i just tested it out and everything seems good, the device deep sleeps just fine. :good:
Hi @ktoonsez congrats on your first S6 release!
Here you have an better dmesg log of an 10 minute run including deep sleep.
@ktoonsez thanks a lot, I'll try soon.
There's a small error in the op, it says "KT-SGS5 kernel features" instead of KT-SGS6
Good luck for the development
Question what is the difference between this kernel and the one you posted yesterday for the 920f ?
edgarf28 said:
Hi @ktoonsez congrats on your first S6 release!
Here you have an better dmesg log of an 10 minute run including deep sleep.
Click to expand...
Click to collapse
How did you get that log? KTweaker closes itself instantly for me?

[KERNEL][SPR][TW5.0][05/28/2015] KT-SGS6 - OE3 - KTweaker

Ktoonsez presents:
{
"lightbox_close": "Close",
"lightbox_next": "Next",
"lightbox_previous": "Previous",
"lightbox_error": "The requested content cannot be loaded. Please try again later.",
"lightbox_start_slideshow": "Start slideshow",
"lightbox_stop_slideshow": "Stop slideshow",
"lightbox_full_screen": "Full screen",
"lightbox_thumbnails": "Thumbnails",
"lightbox_download": "Download",
"lightbox_share": "Share",
"lightbox_zoom": "Zoom",
"lightbox_new_window": "New window",
"lightbox_toggle_sidebar": "Toggle sidebar"
}
​
KT-SGS6 kernel features
•Must have a S6 model G920P
•Samsung open source
•Optimized kernel configuration
•unsecure root adb
•Voltage interface
•Over Clocking
•Under Clocking
•KTweaker app for kernel control
•KTweaker Widgets
•KTmonitor app to watch your cpu cores current speed
Click to expand...
Click to collapse
Touchwiz Lollipop 5.0 VERSION:
05.28.2015: http://bit.ly/1HVHhuV
Click to expand...
Click to collapse
Sources can be found here:
https://github.com/ktoonsez/KTSGS6
What you can expect to get benchmark wise with a good CPU OC'd:
Go to my original thread to view Change logs:
http://forum.xda-developers.com/showpost.php?p=60180784&postcount=2
ktoonservative explained:
Any item with the word cycle in it refers to how many sampling_rate's have occured. A 22 ruffly equates to 1 second for a sampling_rate of 45000
block_cycles_offline_screen_off =1
How many sampling_rate cycles need to occur before a core is allowed to go OFFLINE while the screen is OFF.
block_cycles_offline_screen_on = 11
How many sampling_rate cycles need to occur before a core is allowed to go OFFLINE while the screen is ON.
block_cycles_online_screen_off = 11
How many sampling_rate cycles need to occur before a core is allowed to go ONLINE while the screen is OFF.
block_cycles_online_screen_on = 3
How many sampling_rate cycles need to occur before a core is allowed to go ONLINE while the screen is ON.
block_cycles_raise_screen_off = 11
How many sampling_rate cycles need to occur before the current Mhz is allowed to be raised while the screen is OFF.
block_cycles_raise_screen_on = 3
How many sampling_rate cycles need to occur before the current Mhz is allowed to be raised while the screen is ON.
button_boost_screen_off_core_1 = 1
When this item is a 1, it will turn on the core #1 when a button any hard button is pressed while the screen is OFF. 0 leaves the core in its current state.
button_boost_screen_on_core_1 = 1
When this item is a 1, it will turn on the core #1 when a button any hard button is pressed while the screen is ON. 0 leaves the core in its current state.
button_boost_screen_off_core_2 = 1
When this item is a 1, it will turn on the core #2 when a button any hard button is pressed while the screen is OFF. 0 leaves the core in its current state.
button_boost_screen_on_core_2 = 1
When this item is a 1, it will turn on the core #2 when a button any hard button is pressed while the screen is ON. 0 leaves the core in its current state.
button_boost_screen_off_core_3 = 1
When this item is a 1, it will turn on the core #3 when a button any hard button is pressed while the screen is OFF. 0 leaves the core in its current state.
button_boost_screen_on_core_3 = 1
When this item is a 1, it will turn on the core #3 when a button any hard button is pressed while the screen is ON. 0 leaves the core in its current state.
button_boost_screen_off_core_4 = 1
When this item is a 1, it will turn on the core #4 when a button any hard button is pressed while the screen is OFF. 0 leaves the core in its current state.
button_boost_screen_on_core_4 = 1
When this item is a 1, it will turn on the core #4 when a button any hard button is pressed while the screen is ON. 0 leaves the core in its current state.
button_boost_screen_off_core_5 = 1
When this item is a 1, it will turn on the core #5 when a button any hard button is pressed while the screen is OFF. 0 leaves the core in its current state.
button_boost_screen_on_core_5 = 1
When this item is a 1, it will turn on the core #5 when a button any hard button is pressed while the screen is ON. 0 leaves the core in its current state.
button_boost_screen_off_core_6 = 1
When this item is a 1, it will turn on the core #6 when a button any hard button is pressed while the screen is OFF. 0 leaves the core in its current state.
button_boost_screen_on_core_6 = 1
When this item is a 1, it will turn on the core #6 when a button any hard button is pressed while the screen is ON. 0 leaves the core in its current state.
button_boost_screen_off_core_7 = 1
When this item is a 1, it will turn on the core #7 when a button any hard button is pressed while the screen is OFF. 0 leaves the core in its current state.
button_boost_screen_on_core_7 = 1
When this item is a 1, it will turn on the core #7 when a button any hard button is pressed while the screen is ON. 0 leaves the core in its current state.
boost_hold_cycles = 22
How many sampling_rate cycles need to occur before going out of CPU/GPU boost mode
cpu_load_adder_at_max_gpu = 0
When set to higher than zero, this will add to the actual CPU load to create a perceived higher load when an app is using alot of GPU but not CPU.
cpu_load_adder_at_max_gpu_ignore_tb = 0
When set to 1, this will ignore cpu_load_adder_at_max_gpu during touch/button boost. When set to 0 cpu_load_adder_at_max_gpu will be used all the time.
disable_hotplug = 0
When this item is a 1, it disables hotplugging so all cores stay on full time. 0 lets all cores turn on and off when needed.
disable_hotplug_bt = 0
When this item is a 1, it disables hotplugging so all cores stay on full time while paired to a bluetooth device and doing bluetooth activities like playing music, transfering files.... 0 doesn't do anything extra to the cores when doing bluetooth functions.
disable_hotplug_chrg = 0
When this item is a 1, it disables hotplugging so all cores stay on full time while charging the device. 0 doesn't do anything extra to the cores while charging.
disable_hotplug_media = 0
When this item is a 1, it disables hotplugging so all cores stay on full time while playing music or movies. 0 doesn't do anything extra to the cores while music or movies are playing.
down_threshold_screen_off = 52
A percentage of CPU utilization that needs to occur before the current Mhz begins to lower while screen is OFF.
down_threshold_screen_off_hotplug_1 = 40
A percentage of CPU utilization that needs to occur before the core #1 is taken offline while screen is OFF.
down_threshold_screen_off_hotplug_2 = 45
A percentage of CPU utilization that needs to occur before the core #2 is taken offline while screen is OFF.
down_threshold_screen_off_hotplug_3 = 50
A percentage of CPU utilization that needs to occur before the core #3 is taken offline while screen is OFF.
down_threshold_screen_off_hotplug_4 = 55
A percentage of CPU utilization that needs to occur before the core #4 is taken offline while screen is OFF.
down_threshold_screen_off_hotplug_5 = 60
A percentage of CPU utilization that needs to occur before the core #5 is taken offline while screen is OFF.
down_threshold_screen_off_hotplug_6 = 65
A percentage of CPU utilization that needs to occur before the core #6 is taken offline while screen is OFF.
down_threshold_screen_off_hotplug_7 = 70
A percentage of CPU utilization that needs to occur before the core #7 is taken offline while screen is OFF.
down_threshold_screen_on = 52
A percentage of CPU utilization that needs to occur before the current Mhz begins to lower while screen is ON.
down_threshold_screen_on_hotplug_1 = 35
A percentage of CPU utilization that needs to occur before the core #1 is taken offline while screen is ON.
down_threshold_screen_on_hotplug_2 = 40
A percentage of CPU utilization that needs to occur before the core #2 is taken offline while screen is ON.
down_threshold_screen_on_hotplug_3 = 45
A percentage of CPU utilization that needs to occur before the core #3 is taken offline while screen is ON.
down_threshold_screen_on_hotplug_4 = 50
A percentage of CPU utilization that needs to occur before the core #4 is taken offline while screen is ON.
down_threshold_screen_on_hotplug_5 = 55
A percentage of CPU utilization that needs to occur before the core #5 is taken offline while screen is ON.
down_threshold_screen_on_hotplug_6 = 60
A percentage of CPU utilization that needs to occur before the core #6 is taken offline while screen is ON.
down_threshold_screen_on_hotplug_7 = 65
A percentage of CPU utilization that needs to occur before the core #7 is taken offline while screen is ON.
freq_step_lower_screen_off = 8
How many steps from the Mhz table (the entire Mhz table can bee seen in the CPU Voltage screen) it skips when lowering the current Mhz while the screen is OFF.
freq_step_lower_screen_on = 2
How many steps from the Mhz table (the entire Mhz table can bee seen in the CPU Voltage screen) it skips when lowering the current Mhz while the screen is ON.
freq_step_raise_screen_off = 1
How many steps from the Mhz table (the entire Mhz table can bee seen in the CPU Voltage screen) it skips when raising the current Mhz while the screen is OFF.
freq_step_raise_screen_on = 5
How many steps from the Mhz table (the entire Mhz table can bee seen in the CPU Voltage screen) it skips when raising the current Mhz while the screen is ON.
ignore_nice_load = 0
If this value is 1, the system will ignore "Nice" processes when deciding to scale up or down. Nice processes are used by the IO scheduler to designate a low-priority process. Ignore nice load basically tells a governor to disregard processes with higher nice values.
lockout_hotplug_screen_off_core_1 = 0
This is a 3 way option. While the screen is OFF, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_on_core_1 = 0
This is a 3 way option. While the screen is ON, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_off_core_2 = 0
This is a 3 way option. While the screen is OFF, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_on_core_2 = 0
This is a 3 way option. While the screen is ON, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_off_core_3 = 0
This is a 3 way option. While the screen is OFF, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_on_core_3 = 0
This is a 3 way option. While the screen is ON, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_off_core_4 = 0
This is a 3 way option. While the screen is OFF, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_on_core_4 = 0
This is a 3 way option. While the screen is ON, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_off_core_5 = 0
This is a 3 way option. While the screen is OFF, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_on_core_5 = 0
This is a 3 way option. While the screen is ON, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_off_core_6 = 0
This is a 3 way option. While the screen is OFF, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_on_core_6 = 0
This is a 3 way option. While the screen is ON, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_off_core_7 = 0
This is a 3 way option. While the screen is OFF, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_on_core_7 = 0
This is a 3 way option. While the screen is ON, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_changes_when_boosting = 0
If this value is 1, all CPU changes to all cores will be ignored while executing a touch/button boost. If 0 all cores will be allowed to scale and hotplug.
no_extra_cores_screen_off = 1
When set to a 1, this option keeps all extra CPU cores offline while the screen is OFF. 0 lets it hotplug them on and off as needed
sampling_rate = 45000
The amount of milliseconds that the governor will analyze the CPU usage and adjust for changes in load while the screen is ON.
sampling_rate_min = 10000
READ-ONLY value that specifies the lower value that "sampling_rate" and "sampling_rate_screen_off" will accept.
sampling_rate_screen_off = 45000
The amount of milliseconds that the governor will analyze the CPU usage and adjust for changes in load while the screen is OFF.
super_conservative_screen_off = 0
With the screen OFF: When set to a 1, this option will explicitly obey your block cycles settings to be a super battery saver (Setting a 1 will slow down the UI a little bit). When set to a 0 it uses fuzzy logic on the "block cycle" items.
super_conservative_screen_on = 0
With the screen ON: When set to a 1, this option will explicitly obey your block cycles settings to be a super battery saver (Setting a 1 will slow down the UI a little bit). When set to a 0 it uses fuzzy logic on the "block cycle" items to create a smooooooth UI experience.
touch_boost_cpu_cl0 = 1200000
The Mhz that you want the online CPU's to jump to when the screen is touched for the the LITTLE CPU (Cluster 0).
touch_boost_cpu_cl1 = 1600000
The Mhz that you want the online CPU's to jump to when the screen is touched for the the BIG CPU (Cluster 1).
touch_boost_core_1 = 1
When set to a 1, this option turns on the core #1 when the screen is touched. When set to a 0 it doesn't do anything extra to the cores.
touch_boost_core_2 = 1
When set to a 1, this option turns on the core #2 when the screen is touched. When set to a 0 it doesn't do anything extra to the cores.
touch_boost_core_3 = 0
When set to a 1, this option turns on the core #3 when the screen is touched. When set to a 0 it doesn't do anything extra to the cores.
touch_boost_core_4 = 0
When set to a 1, this option turns on the core #4 when the screen is touched. When set to a 0 it doesn't do anything extra to the cores.
touch_boost_core_5 = 0
When set to a 1, this option turns on the core #5 when the screen is touched. When set to a 0 it doesn't do anything extra to the cores.
touch_boost_core_6 = 0
When set to a 1, this option turns on the core #6 when the screen is touched. When set to a 0 it doesn't do anything extra to the cores.
touch_boost_core_7 = 0
When set to a 1, this option turns on the core #7 when the screen is touched. When set to a 0 it doesn't do anything extra to the cores.
touch_boost_gpu = 424
This value specifies what Mhz the GPU should jump to when the screen is touched.
up_threshold_screen_off = 57
A percentage of CPU utilization that needs to occur before the current Mhz begins to raise while screen is OFF.
up_threshold_screen_off_hotplug_1 = 55
A percentage of CPU utilization that needs to occur before the core #1 is put online while screen is OFF.
up_threshold_screen_off_hotplug_2 = 60
A percentage of CPU utilization that needs to occur before the core #2 is put online while screen is OFF.
up_threshold_screen_off_hotplug_3 = 65
A percentage of CPU utilization that needs to occur before the core #3 is put online while screen is OFF.
up_threshold_screen_off_hotplug_4 = 70
A percentage of CPU utilization that needs to occur before the core #4 is put online while screen is OFF.
up_threshold_screen_off_hotplug_5 = 75
A percentage of CPU utilization that needs to occur before the core #5 is put online while screen is OFF.
up_threshold_screen_off_hotplug_6 = 80
A percentage of CPU utilization that needs to occur before the core #6 is put online while screen is OFF.
up_threshold_screen_off_hotplug_7 = 85
A percentage of CPU utilization that needs to occur before the core #7 is put online while screen is OFF.
up_threshold_screen_on = 57
A percentage of CPU utilization that needs to occur before the current Mhz begins to raise while screen is ON.
up_threshold_screen_on_hotplug_1 = 50
A percentage of CPU utilization that needs to occur before the core #1 is put online while screen is ON.
up_threshold_screen_on_hotplug_2 = 55
A percentage of CPU utilization that needs to occur before the core #2 is put online while screen is ON.
up_threshold_screen_on_hotplug_3 = 60
A percentage of CPU utilization that needs to occur before the core #3 is put online while screen is ON.
up_threshold_screen_on_hotplug_4 = 60
A percentage of CPU utilization that needs to occur before the core #4 is put online while screen is ON.
up_threshold_screen_on_hotplug_5 = 60
A percentage of CPU utilization that needs to occur before the core #5 is put online while screen is ON.
up_threshold_screen_on_hotplug_6 = 60
A percentage of CPU utilization that needs to occur before the core #6 is put online while screen is ON.
up_threshold_screen_on_hotplug_7 = 60
A percentage of CPU utilization that needs to occur before the core #7 is put online while screen is ON.
Hell yeah
thank you ktoon:good::good::good:
It's on!!! thanks ktoonsez ✌
Nice KT, good to see you here brotha. Did you pick up an S6,or are you just building blind?
reverepats said:
Nice KT, good to see you here brotha. Did you pick up an S6,or are you just building blind?
Click to expand...
Click to collapse
Blind building. Still no announcement of a Verizon version yet. They r soooooooo slow
ktoonsez said:
Blind building. Still no announcement of a Verizon version yet. They r soooooooo slow
Click to expand...
Click to collapse
Ahh i see. Wait, Verizon does have the S6 available for purchase yet?
reverepats said:
Ahh i see. Wait, Verizon does have the S6 available for purchase yet?
Click to expand...
Click to collapse
No dev version and barely anyone with the Kmart version has one yet.
Thanks for this. Im rooted and ready!
reverepats said:
Nice KT, good to see you here brotha. Did you pick up an S6,or are you just building blind?
Click to expand...
Click to collapse
Nice to see you here, like your themes.
Firmware OCF
ktoonsez said:
Ktoonsez presents:
​
Sources can be found here:
https://github.com/ktoonsez/KTSGS6
Click to expand...
Click to collapse
Does this "version" work with lollipop 5.0.2?
Thanks.
Yes I've been running since posted.
Touchwiz Lollipop 5.0 VERSION:
04.29.2015: http://bit.ly/1DCZND4
Click to expand...
Click to collapse
Make sure you delete the KTweaker folder on your sdcard before flashing the new one!!!!!!!!!!!
Change Log 04.29.2015
1. Add voltage control for little and BIG CPU's. Thanks to AndreiLux for pointing me to the right files.
2. Added ondemand and conservative governor.
3. Added CPU Min/Max control for BIG CPU
4. Added ability to tweak governor adjustments.
5. GPU governor selection is working, dont mess with Min/Max yet.
ktoonsez said:
Make sure you delete the KTweaker folder on your sdcard before flashing the new one!!!!!!!!!!!
Change Log 04.29.2015
1. Add voltage control for little and BIG CPU's. Thanks to AndreiLux for pointing me to the right files.
2. Added ondemand and conservative governor.
3. Added CPU Min/Max control for BIG CPU
4. Added ability to tweak governor adjustments.
5. GPU governor selection is working, dont mess with Min/Max yet.
Click to expand...
Click to collapse
Ktoonsez just reporting that I flashed the new version and it hangs in the sprint spark screen. Ps I deleted the KTweaker folder after flashing the kernel
DR0IDMANIAC said:
Ktoonsez just reporting that I flashed the new version and it hangs in the sprint spark screen. Ps I deleted the KTweaker folder after flashing the kernel
Click to expand...
Click to collapse
Works on all my testers, sounds like u might have a bad download or running a ROM that needs its own kernel maybe
ktoonsez said:
Works on all my testers, sounds like u might have a bad download or running a ROM that needs its own kernel maybe
Click to expand...
Click to collapse
Ok, will try again, thanks
Works fine for me.
Working great now, was a bad download I think

[KERNEL][TMO][TW5.0][06/22/2015] KT-SGS6E - OE3 - KTweaker

Ktoonsez presents:
{
"lightbox_close": "Close",
"lightbox_next": "Next",
"lightbox_previous": "Previous",
"lightbox_error": "The requested content cannot be loaded. Please try again later.",
"lightbox_start_slideshow": "Start slideshow",
"lightbox_stop_slideshow": "Stop slideshow",
"lightbox_full_screen": "Full screen",
"lightbox_thumbnails": "Thumbnails",
"lightbox_download": "Download",
"lightbox_share": "Share",
"lightbox_zoom": "Zoom",
"lightbox_new_window": "New window",
"lightbox_toggle_sidebar": "Toggle sidebar"
}
​
KT-SGS6 kernel features
•Must have a S6 model G920F and G920I and G920S and G920T and G925F and G925I and G925S and G925T
•Samsung open source
•Optimized kernel configuration
•unsecure root adb
•Voltage interface
•Over Clocking
•Under Clocking
•KTweaker app for kernel control
•KTweaker Widgets
•KTmonitor app to watch your cpu cores current speed
Click to expand...
Click to collapse
KTweaker Shop and profile help, plus previous versions can be seen here (thanks to LuigiBull23):
http://forum.xda-developers.com/tmo...nel-kt-sgs6-builds-variants-ktweaker-t3107867
Touchwiz Lollipop 5.0 VERSION:
06.22.2015: http://bit.ly/1Jf6B2n
Click to expand...
Click to collapse
KTweaker Shop and profile help, plus previous versions can be seen here (thanks to LuigiBull23):
http://forum.xda-developers.com/tmo...kernel-kt-sgs6e-builds-ktweaker-shop-t3107937
Sources can be found here:
https://github.com/ktoonsez/KTSGS6
What you can expect to get benchmark wise with a good CPU OC'd:
Go to my original thread to view Change logs:
http://forum.xda-developers.com/showpost.php?p=60180784&postcount=2
ktoonservative explained:
Any item with the word cycle in it refers to how many sampling_rate's have occured. A 22 ruffly equates to 1 second for a sampling_rate of 45000
block_cycles_offline_screen_off =1
How many sampling_rate cycles need to occur before a core is allowed to go OFFLINE while the screen is OFF.
block_cycles_offline_screen_on = 11
How many sampling_rate cycles need to occur before a core is allowed to go OFFLINE while the screen is ON.
block_cycles_online_screen_off = 11
How many sampling_rate cycles need to occur before a core is allowed to go ONLINE while the screen is OFF.
block_cycles_online_screen_on = 3
How many sampling_rate cycles need to occur before a core is allowed to go ONLINE while the screen is ON.
block_cycles_raise_screen_off = 11
How many sampling_rate cycles need to occur before the current Mhz is allowed to be raised while the screen is OFF.
block_cycles_raise_screen_on = 3
How many sampling_rate cycles need to occur before the current Mhz is allowed to be raised while the screen is ON.
button_boost_screen_off_core_1 = 1
When this item is a 1, it will turn on the core #1 when a button any hard button is pressed while the screen is OFF. 0 leaves the core in its current state.
button_boost_screen_on_core_1 = 1
When this item is a 1, it will turn on the core #1 when a button any hard button is pressed while the screen is ON. 0 leaves the core in its current state.
button_boost_screen_off_core_2 = 1
When this item is a 1, it will turn on the core #2 when a button any hard button is pressed while the screen is OFF. 0 leaves the core in its current state.
button_boost_screen_on_core_2 = 1
When this item is a 1, it will turn on the core #2 when a button any hard button is pressed while the screen is ON. 0 leaves the core in its current state.
button_boost_screen_off_core_3 = 1
When this item is a 1, it will turn on the core #3 when a button any hard button is pressed while the screen is OFF. 0 leaves the core in its current state.
button_boost_screen_on_core_3 = 1
When this item is a 1, it will turn on the core #3 when a button any hard button is pressed while the screen is ON. 0 leaves the core in its current state.
button_boost_screen_off_core_4 = 1
When this item is a 1, it will turn on the core #4 when a button any hard button is pressed while the screen is OFF. 0 leaves the core in its current state.
button_boost_screen_on_core_4 = 1
When this item is a 1, it will turn on the core #4 when a button any hard button is pressed while the screen is ON. 0 leaves the core in its current state.
button_boost_screen_off_core_5 = 1
When this item is a 1, it will turn on the core #5 when a button any hard button is pressed while the screen is OFF. 0 leaves the core in its current state.
button_boost_screen_on_core_5 = 1
When this item is a 1, it will turn on the core #5 when a button any hard button is pressed while the screen is ON. 0 leaves the core in its current state.
button_boost_screen_off_core_6 = 1
When this item is a 1, it will turn on the core #6 when a button any hard button is pressed while the screen is OFF. 0 leaves the core in its current state.
button_boost_screen_on_core_6 = 1
When this item is a 1, it will turn on the core #6 when a button any hard button is pressed while the screen is ON. 0 leaves the core in its current state.
button_boost_screen_off_core_7 = 1
When this item is a 1, it will turn on the core #7 when a button any hard button is pressed while the screen is OFF. 0 leaves the core in its current state.
button_boost_screen_on_core_7 = 1
When this item is a 1, it will turn on the core #7 when a button any hard button is pressed while the screen is ON. 0 leaves the core in its current state.
boost_hold_cycles = 22
How many sampling_rate cycles need to occur before going out of CPU/GPU boost mode
cpu_load_adder_at_max_gpu = 0
When set to higher than zero, this will add to the actual CPU load to create a perceived higher load when an app is using alot of GPU but not CPU.
cpu_load_adder_at_max_gpu_ignore_tb = 0
When set to 1, this will ignore cpu_load_adder_at_max_gpu during touch/button boost. When set to 0 cpu_load_adder_at_max_gpu will be used all the time.
disable_hotplug = 0
When this item is a 1, it disables hotplugging so all cores stay on full time. 0 lets all cores turn on and off when needed.
disable_hotplug_bt = 0
When this item is a 1, it disables hotplugging so all cores stay on full time while paired to a bluetooth device and doing bluetooth activities like playing music, transfering files.... 0 doesn't do anything extra to the cores when doing bluetooth functions.
disable_hotplug_chrg = 0
When this item is a 1, it disables hotplugging so all cores stay on full time while charging the device. 0 doesn't do anything extra to the cores while charging.
disable_hotplug_media = 0
When this item is a 1, it disables hotplugging so all cores stay on full time while playing music or movies. 0 doesn't do anything extra to the cores while music or movies are playing.
down_threshold_screen_off = 52
A percentage of CPU utilization that needs to occur before the current Mhz begins to lower while screen is OFF.
down_threshold_screen_off_hotplug_1 = 40
A percentage of CPU utilization that needs to occur before the core #1 is taken offline while screen is OFF.
down_threshold_screen_off_hotplug_2 = 45
A percentage of CPU utilization that needs to occur before the core #2 is taken offline while screen is OFF.
down_threshold_screen_off_hotplug_3 = 50
A percentage of CPU utilization that needs to occur before the core #3 is taken offline while screen is OFF.
down_threshold_screen_off_hotplug_4 = 55
A percentage of CPU utilization that needs to occur before the core #4 is taken offline while screen is OFF.
down_threshold_screen_off_hotplug_5 = 60
A percentage of CPU utilization that needs to occur before the core #5 is taken offline while screen is OFF.
down_threshold_screen_off_hotplug_6 = 65
A percentage of CPU utilization that needs to occur before the core #6 is taken offline while screen is OFF.
down_threshold_screen_off_hotplug_7 = 70
A percentage of CPU utilization that needs to occur before the core #7 is taken offline while screen is OFF.
down_threshold_screen_on = 52
A percentage of CPU utilization that needs to occur before the current Mhz begins to lower while screen is ON.
down_threshold_screen_on_hotplug_1 = 35
A percentage of CPU utilization that needs to occur before the core #1 is taken offline while screen is ON.
down_threshold_screen_on_hotplug_2 = 40
A percentage of CPU utilization that needs to occur before the core #2 is taken offline while screen is ON.
down_threshold_screen_on_hotplug_3 = 45
A percentage of CPU utilization that needs to occur before the core #3 is taken offline while screen is ON.
down_threshold_screen_on_hotplug_4 = 50
A percentage of CPU utilization that needs to occur before the core #4 is taken offline while screen is ON.
down_threshold_screen_on_hotplug_5 = 55
A percentage of CPU utilization that needs to occur before the core #5 is taken offline while screen is ON.
down_threshold_screen_on_hotplug_6 = 60
A percentage of CPU utilization that needs to occur before the core #6 is taken offline while screen is ON.
down_threshold_screen_on_hotplug_7 = 65
A percentage of CPU utilization that needs to occur before the core #7 is taken offline while screen is ON.
freq_step_lower_screen_off = 8
How many steps from the Mhz table (the entire Mhz table can bee seen in the CPU Voltage screen) it skips when lowering the current Mhz while the screen is OFF.
freq_step_lower_screen_on = 2
How many steps from the Mhz table (the entire Mhz table can bee seen in the CPU Voltage screen) it skips when lowering the current Mhz while the screen is ON.
freq_step_raise_screen_off = 1
How many steps from the Mhz table (the entire Mhz table can bee seen in the CPU Voltage screen) it skips when raising the current Mhz while the screen is OFF.
freq_step_raise_screen_on = 5
How many steps from the Mhz table (the entire Mhz table can bee seen in the CPU Voltage screen) it skips when raising the current Mhz while the screen is ON.
ignore_nice_load = 0
If this value is 1, the system will ignore "Nice" processes when deciding to scale up or down. Nice processes are used by the IO scheduler to designate a low-priority process. Ignore nice load basically tells a governor to disregard processes with higher nice values.
lockout_hotplug_screen_off_core_1 = 0
This is a 3 way option. While the screen is OFF, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_on_core_1 = 0
This is a 3 way option. While the screen is ON, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_off_core_2 = 0
This is a 3 way option. While the screen is OFF, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_on_core_2 = 0
This is a 3 way option. While the screen is ON, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_off_core_3 = 0
This is a 3 way option. While the screen is OFF, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_on_core_3 = 0
This is a 3 way option. While the screen is ON, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_off_core_4 = 0
This is a 3 way option. While the screen is OFF, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_on_core_4 = 0
This is a 3 way option. While the screen is ON, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_off_core_5 = 0
This is a 3 way option. While the screen is OFF, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_on_core_5 = 0
This is a 3 way option. While the screen is ON, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_off_core_6 = 0
This is a 3 way option. While the screen is OFF, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_on_core_6 = 0
This is a 3 way option. While the screen is ON, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_off_core_7 = 0
This is a 3 way option. While the screen is OFF, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_on_core_7 = 0
This is a 3 way option. While the screen is ON, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_changes_when_boosting = 0
If this value is 1, all CPU changes to all cores will be ignored while executing a touch/button boost. If 0 all cores will be allowed to scale and hotplug.
no_extra_cores_screen_off = 1
When set to a 1, this option keeps all extra CPU cores offline while the screen is OFF. 0 lets it hotplug them on and off as needed
sampling_rate = 45000
The amount of milliseconds that the governor will analyze the CPU usage and adjust for changes in load while the screen is ON.
sampling_rate_min = 10000
READ-ONLY value that specifies the lower value that "sampling_rate" and "sampling_rate_screen_off" will accept.
sampling_rate_screen_off = 45000
The amount of milliseconds that the governor will analyze the CPU usage and adjust for changes in load while the screen is OFF.
super_conservative_screen_off = 0
With the screen OFF: When set to a 1, this option will explicitly obey your block cycles settings to be a super battery saver (Setting a 1 will slow down the UI a little bit). When set to a 0 it uses fuzzy logic on the "block cycle" items.
super_conservative_screen_on = 0
With the screen ON: When set to a 1, this option will explicitly obey your block cycles settings to be a super battery saver (Setting a 1 will slow down the UI a little bit). When set to a 0 it uses fuzzy logic on the "block cycle" items to create a smooooooth UI experience.
touch_boost_cpu_cl0 = 1200000
The Mhz that you want the online CPU's to jump to when the screen is touched for the the LITTLE CPU (Cluster 0).
touch_boost_cpu_cl1 = 1600000
The Mhz that you want the online CPU's to jump to when the screen is touched for the the BIG CPU (Cluster 1).
touch_boost_core_1 = 1
When set to a 1, this option turns on the core #1 when the screen is touched. When set to a 0 it doesn't do anything extra to the cores.
touch_boost_core_2 = 1
When set to a 1, this option turns on the core #2 when the screen is touched. When set to a 0 it doesn't do anything extra to the cores.
touch_boost_core_3 = 0
When set to a 1, this option turns on the core #3 when the screen is touched. When set to a 0 it doesn't do anything extra to the cores.
touch_boost_core_4 = 0
When set to a 1, this option turns on the core #4 when the screen is touched. When set to a 0 it doesn't do anything extra to the cores.
touch_boost_core_5 = 0
When set to a 1, this option turns on the core #5 when the screen is touched. When set to a 0 it doesn't do anything extra to the cores.
touch_boost_core_6 = 0
When set to a 1, this option turns on the core #6 when the screen is touched. When set to a 0 it doesn't do anything extra to the cores.
touch_boost_core_7 = 0
When set to a 1, this option turns on the core #7 when the screen is touched. When set to a 0 it doesn't do anything extra to the cores.
touch_boost_gpu = 424
This value specifies what Mhz the GPU should jump to when the screen is touched.
up_threshold_screen_off = 57
A percentage of CPU utilization that needs to occur before the current Mhz begins to raise while screen is OFF.
up_threshold_screen_off_hotplug_1 = 55
A percentage of CPU utilization that needs to occur before the core #1 is put online while screen is OFF.
up_threshold_screen_off_hotplug_2 = 60
A percentage of CPU utilization that needs to occur before the core #2 is put online while screen is OFF.
up_threshold_screen_off_hotplug_3 = 65
A percentage of CPU utilization that needs to occur before the core #3 is put online while screen is OFF.
up_threshold_screen_off_hotplug_4 = 70
A percentage of CPU utilization that needs to occur before the core #4 is put online while screen is OFF.
up_threshold_screen_off_hotplug_5 = 75
A percentage of CPU utilization that needs to occur before the core #5 is put online while screen is OFF.
up_threshold_screen_off_hotplug_6 = 80
A percentage of CPU utilization that needs to occur before the core #6 is put online while screen is OFF.
up_threshold_screen_off_hotplug_7 = 85
A percentage of CPU utilization that needs to occur before the core #7 is put online while screen is OFF.
up_threshold_screen_on = 57
A percentage of CPU utilization that needs to occur before the current Mhz begins to raise while screen is ON.
up_threshold_screen_on_hotplug_1 = 50
A percentage of CPU utilization that needs to occur before the core #1 is put online while screen is ON.
up_threshold_screen_on_hotplug_2 = 55
A percentage of CPU utilization that needs to occur before the core #2 is put online while screen is ON.
up_threshold_screen_on_hotplug_3 = 60
A percentage of CPU utilization that needs to occur before the core #3 is put online while screen is ON.
up_threshold_screen_on_hotplug_4 = 60
A percentage of CPU utilization that needs to occur before the core #4 is put online while screen is ON.
up_threshold_screen_on_hotplug_5 = 60
A percentage of CPU utilization that needs to occur before the core #5 is put online while screen is ON.
up_threshold_screen_on_hotplug_6 = 60
A percentage of CPU utilization that needs to occur before the core #6 is put online while screen is ON.
up_threshold_screen_on_hotplug_7 = 60
A percentage of CPU utilization that needs to occur before the core #7 is put online while screen is ON.
Thank You!!!
Lovely restoring 5.0.2 backup now. Will you add support for 5.1.1 or do you need source?
ktetreault14 said:
Lovely restoring 5.0.2 backup now. Will you add support for 5.1.1 or do you need source?
Click to expand...
Click to collapse
There is no source released by Samsung, will probably take them a few weeks before they post
thanks for making this work on our t mobile edge!:good:
Ktoonsez does it again!
Bravo!
Pp.
NICE!! Your work is all i used back when i was on S4! good things are coming to the s6 edge i see!
thanksss!
---------- Post added at 07:42 AM ---------- Previous post was at 07:41 AM ----------
Question, will this kernel fix the deep sleep bug when having custom recovery installed?
thnaks again bro!
cris_epic said:
NICE!! Your work is all i used back when i was on S4! good things are coming to the s6 edge i see!
thanksss!
---------- Post added at 07:42 AM ---------- Previous post was at 07:41 AM ----------
Question, will this kernel fix the deep sleep bug when having custom recovery installed?
thnaks again bro!
Click to expand...
Click to collapse
Thanks man. It should but cant be sure. I did my part in the kernel so when flashing my kernel you dont loose deep sleep.
So W8 and Tmobile are kind of same device?
brar.arsh said:
So W8 and Tmobile are kind of same device?
Click to expand...
Click to collapse
Yes those 2 are. That's about it for all the different variants.
ktoonsez said:
Yes those 2 are. That's about it for all the different variants.
Click to expand...
Click to collapse
Thanks, will try this.. Can I also install leaked 5.1.1 then if they are same?
Awesome to have you been using ur kernels for a o couple of years now lol. time to flash woot woot
Btw download link seems to be down atm any other mirrors ?
brar.arsh said:
Thanks, will try this.. Can I also install leaked 5.1.1 then if they are same?
Click to expand...
Click to collapse
You can try and let us know. I will see if I can flash the Canadian Videotron 925W8 ROM to my 925T tomorrow. All I want is to sim unlock the damn phone bypassing the T-Mobile unlock app.
Thank you for taking the time to make this kernal on T-mobile. Super stoked!
Thanks a lot for the kernel ktoonsez! Exactly what I wanted to see, especially in the app. I know there are many more things to come. Don't know if you remember me from the sgs3 days, we worked together on some small kernel issues with a couple other devs. I developed roms on the sgs3 and hope to jump into the scene with sgs6e.
Sent from my SM-G925T using XDA Free mobile app
Running smooth. Really glad for something to flash on this bad boy. Thanks.☺
Word
Best battery life yet! Thanks for the kernel. Just came from the Oneplus One ( I know I know.. Hehe ) and ran your kernel on that since day one. Glad to have you supporting the s6 edge! Thanks!
Touchwiz Lollipop 5.0 VERSION:
05.04.2015: http://bit.ly/1QgSQQZ
Click to expand...
Click to collapse
Change Log 05.04.2015
1. Add all the TCP congestion option from my S5
2. Added BFQ scheduler
3. Added FIOPS scheduler
4. Fix permissions issues with interactive tunables
5. Fix some set on boot issues where certain options were not getting set.
6. KTmonitor now shows all 8 cores
7. Added "ASV Info" to KTweaker->Get Phone Information screen so you can see your CPU "bin"
8. There was some other stuff I cant remember, enjoy the awesome

Categories

Resources