Related
Hi. (htc desire android 2.1)
In my app-i'm trying to show on screen values of light (lux) , but i get only few values(0-min 40, 90, 160, 225, 640, 1280-max). Is there oportunity to get much more values between 0 - 1280?? Maybe i use wrong variable. Is there a variable of sensor's current or voltage ?? Can you help me??
sensorManager = (SensorManager) getSystemService(SENSOR_SERVICE);
sensorManager.registerListener(this, sensorManager.getDefaultSensor(Sensor.TYPE_LIGHT), sensorManager.SENSOR_DELAY_GAME);
sensorManager.unregisterListener(this,sensorManager.getDefaultSensor(Sensor.TYPE_LIGHT));
outputX.setText("E:"+Float.toString(event.values[0]));
I spent some time last night and today trying to figure out how the /sys/etc/mdnie* files work. Most of my work was on the mdnie_tune_*_mode where * is movie, dynamic and standard. These, of course, correspond to the three modes in Settings | Display | Screen mode. The data below is from stock EL29. I don't know if other versions are the same (are they?).
What I wanted to do was to make a good red night mode. One can use ChainFire3D, but that works by just dropping the green and blue components, while what you really want to do is to convert rgb to luminance, and then use luminance to set the reg. This way, green and blue areas don't just go black, and things are much more legible.
Anyway, here are my partial findings (I am not the first to find them, since I came across an app to adjust the settings, but I couldn't find much of a write-up of how these things work--if you know a writeup, please tell me).
I suggest backing up all your /system/etc/mdnie* files before beginning.
To make the mdnie_tune_standard_mode and mdnie_tune_dynamic_mode files take effect, the corresponding mdnie_tune_ui_*_mode file must have the line 0x0001,0x0040 changed to read:
Code:
0x0001,0x0040,
The movie file already has that.
Then colors can be adjusted by editing the corresponding mdnie_tune_*_mode file. For the changes to take effect, just go to the settings and change profile to something else and back, or in a root shell do:
Code:
cat /sys/devices/virtual/mdnieset_ui/switch_mdnieset_ui/mdnieset_user_select_file_cmd > /sys/devices/virtual/mdnieset_ui/switch_mdnieset_ui/mdnieset_user_select_file_cmd
To edit colors, edit the second column of hex numbers in the mdnie_tune_*_mode file, in the lines numbered 0x00c8-0x00d3 (this is from the default mdnie_tune_standard_mode file):
Code:
0x00c8,0x0000, //kb R SCR
0x00c9,0x0000, //gc R
0x00ca,0xffff, //rm R
0x00cb,0xffff, //yw R
0x00cc,0x0000, //kb G
0x00cd,0xffff, //gc G
0x00ce,0x0000, //rm G
0x00cf,0xffff, //yw G
0x00d0,0x00ff, //kb B
0x00d1,0x00ff, //gc B
0x00d2,0x00ff, //rm B
0x00d3,0x00ff, //yw B
The first number is a register number and the second is a register value. To understand these, note that the first four lines, marked with an "R", control how screen colors map to the red subpixels on the screen; the next four, marked with a "G", control how screen colors map to the green subpixels; the last four, marked with a "B", control how screen colors map to the blue subpixels.
Each line controls the output of two colors, using these codes: k = black (#000000), b = blue (#0000ff), g = green (#00ff00), c = cyan (#00ffff), r = red (#ff0000), m = magenta (#ff00ff), y = yellow (#ffff00), w = white (#ffffff).
E.g., the line
Code:
0x00d2,0x00ff, //rm B
means that red gets a 0x00 Blue subpixel, and magenta gets a a 0xFF Blue subpixel.
For instance, a good way to turn the display black and white is:
Code:
0x00c8,0x001D, //kb R SCR
0x00c9,0x96B3, //gc R
0x00ca,0x4C69, //rm R
0x00cb,0xe2ff, //yw R
0x00cc,0x001d, //kb G
0x00cd,0x96b3, //gc G
0x00ce,0x4c69, //rm G
0x00cf,0xe2ff, //yw G
0x00d0,0x001d, //kb B
0x00d1,0x96b3, //gc B
0x00d2,0x4c69, //rm B
0x00d3,0xe2ff, //yw B
This, e.g., sends red to 4c4c4c, green to 969696, blue to 1d1d1d, black to 000000, and white to ffffff, using the formula: luminance = .2989 R + .5870 G + .114 B
For a good red screen mode, one can use the same values, but set the G and B lines all to zero:
Code:
0x00c8,0x001D, //kb R SCR
0x00c9,0x96B3, //gc R
0x00ca,0x4C69, //rm R
0x00cb,0xe2ff, //yw R
0x00cc,0x0000, //kb G
0x00cd,0x0000, //gc G
0x00ce,0x0000, //rm G
0x00cf,0x0000, //yw G
0x00d0,0x0000, //kb B
0x00d1,0x0000, //gc B
0x00d2,0x0000, //rm B
0x00d3,0x0000, //yw B
I wonder if it works exactly the same way on other Samsung mDNIe devices, like the Note, etc.
do you have work wit galaxy Note II
becauce sharpness is to weak
any ideas to edit this values to make more sharpness our screen
Ktoonsez presents:
{
"lightbox_close": "Close",
"lightbox_next": "Next",
"lightbox_previous": "Previous",
"lightbox_error": "The requested content cannot be loaded. Please try again later.",
"lightbox_start_slideshow": "Start slideshow",
"lightbox_stop_slideshow": "Stop slideshow",
"lightbox_full_screen": "Full screen",
"lightbox_thumbnails": "Thumbnails",
"lightbox_download": "Download",
"lightbox_share": "Share",
"lightbox_zoom": "Zoom",
"lightbox_new_window": "New window",
"lightbox_toggle_sidebar": "Toggle sidebar"
}
KT-SGS6 kernel features
•Must have a S6 model G920F and G920I and G920S and G920T and G920W8 and G925F and G925I and G925S and G925T and G925W8
•Samsung open source
•Optimized kernel configuration
•unsecure root adb
•Voltage interface
•Over Clocking
•Under Clocking
•KTweaker app for kernel control
•KTweaker Widgets
•KTmonitor app to watch your cpu cores current speed
Click to expand...
Click to collapse
KTweaker Shop and profile help, plus previous versions can be seen here (thanks to LuigiBull23):
http://forum.xda-developers.com/tmo...nel-kt-sgs6-builds-variants-ktweaker-t3107867
Touchwiz Lollipop 5.0 VERSION:
06.22.2015: http://bit.ly/1Jf6B2n
Click to expand...
Click to collapse
Sources can be found here:
https://github.com/ktoonsez/KTSGS6
What you can expect to get benchmark wise with a good CPU OC'd:
Go to my original thread to view Change logs:
http://forum.xda-developers.com/showpost.php?p=60180784&postcount=2
ktoonservative explained:
Any item with the word cycle in it refers to how many sampling_rate's have occured. A 22 ruffly equates to 1 second for a sampling_rate of 45000
block_cycles_offline_screen_off =1
How many sampling_rate cycles need to occur before a core is allowed to go OFFLINE while the screen is OFF.
block_cycles_offline_screen_on = 11
How many sampling_rate cycles need to occur before a core is allowed to go OFFLINE while the screen is ON.
block_cycles_online_screen_off = 11
How many sampling_rate cycles need to occur before a core is allowed to go ONLINE while the screen is OFF.
block_cycles_online_screen_on = 3
How many sampling_rate cycles need to occur before a core is allowed to go ONLINE while the screen is ON.
block_cycles_raise_screen_off = 11
How many sampling_rate cycles need to occur before the current Mhz is allowed to be raised while the screen is OFF.
block_cycles_raise_screen_on = 3
How many sampling_rate cycles need to occur before the current Mhz is allowed to be raised while the screen is ON.
button_boost_screen_off_core_1 = 1
When this item is a 1, it will turn on the core #1 when a button any hard button is pressed while the screen is OFF. 0 leaves the core in its current state.
button_boost_screen_on_core_1 = 1
When this item is a 1, it will turn on the core #1 when a button any hard button is pressed while the screen is ON. 0 leaves the core in its current state.
button_boost_screen_off_core_2 = 1
When this item is a 1, it will turn on the core #2 when a button any hard button is pressed while the screen is OFF. 0 leaves the core in its current state.
button_boost_screen_on_core_2 = 1
When this item is a 1, it will turn on the core #2 when a button any hard button is pressed while the screen is ON. 0 leaves the core in its current state.
button_boost_screen_off_core_3 = 1
When this item is a 1, it will turn on the core #3 when a button any hard button is pressed while the screen is OFF. 0 leaves the core in its current state.
button_boost_screen_on_core_3 = 1
When this item is a 1, it will turn on the core #3 when a button any hard button is pressed while the screen is ON. 0 leaves the core in its current state.
button_boost_screen_off_core_4 = 1
When this item is a 1, it will turn on the core #4 when a button any hard button is pressed while the screen is OFF. 0 leaves the core in its current state.
button_boost_screen_on_core_4 = 1
When this item is a 1, it will turn on the core #4 when a button any hard button is pressed while the screen is ON. 0 leaves the core in its current state.
button_boost_screen_off_core_5 = 1
When this item is a 1, it will turn on the core #5 when a button any hard button is pressed while the screen is OFF. 0 leaves the core in its current state.
button_boost_screen_on_core_5 = 1
When this item is a 1, it will turn on the core #5 when a button any hard button is pressed while the screen is ON. 0 leaves the core in its current state.
button_boost_screen_off_core_6 = 1
When this item is a 1, it will turn on the core #6 when a button any hard button is pressed while the screen is OFF. 0 leaves the core in its current state.
button_boost_screen_on_core_6 = 1
When this item is a 1, it will turn on the core #6 when a button any hard button is pressed while the screen is ON. 0 leaves the core in its current state.
button_boost_screen_off_core_7 = 1
When this item is a 1, it will turn on the core #7 when a button any hard button is pressed while the screen is OFF. 0 leaves the core in its current state.
button_boost_screen_on_core_7 = 1
When this item is a 1, it will turn on the core #7 when a button any hard button is pressed while the screen is ON. 0 leaves the core in its current state.
boost_hold_cycles = 22
How many sampling_rate cycles need to occur before going out of CPU/GPU boost mode
cpu_load_adder_at_max_gpu = 0
When set to higher than zero, this will add to the actual CPU load to create a perceived higher load when an app is using alot of GPU but not CPU.
cpu_load_adder_at_max_gpu_ignore_tb = 0
When set to 1, this will ignore cpu_load_adder_at_max_gpu during touch/button boost. When set to 0 cpu_load_adder_at_max_gpu will be used all the time.
disable_hotplug = 0
When this item is a 1, it disables hotplugging so all cores stay on full time. 0 lets all cores turn on and off when needed.
disable_hotplug_bt = 0
When this item is a 1, it disables hotplugging so all cores stay on full time while paired to a bluetooth device and doing bluetooth activities like playing music, transfering files.... 0 doesn't do anything extra to the cores when doing bluetooth functions.
disable_hotplug_chrg = 0
When this item is a 1, it disables hotplugging so all cores stay on full time while charging the device. 0 doesn't do anything extra to the cores while charging.
disable_hotplug_media = 0
When this item is a 1, it disables hotplugging so all cores stay on full time while playing music or movies. 0 doesn't do anything extra to the cores while music or movies are playing.
down_threshold_screen_off = 52
A percentage of CPU utilization that needs to occur before the current Mhz begins to lower while screen is OFF.
down_threshold_screen_off_hotplug_1 = 40
A percentage of CPU utilization that needs to occur before the core #1 is taken offline while screen is OFF.
down_threshold_screen_off_hotplug_2 = 45
A percentage of CPU utilization that needs to occur before the core #2 is taken offline while screen is OFF.
down_threshold_screen_off_hotplug_3 = 50
A percentage of CPU utilization that needs to occur before the core #3 is taken offline while screen is OFF.
down_threshold_screen_off_hotplug_4 = 55
A percentage of CPU utilization that needs to occur before the core #4 is taken offline while screen is OFF.
down_threshold_screen_off_hotplug_5 = 60
A percentage of CPU utilization that needs to occur before the core #5 is taken offline while screen is OFF.
down_threshold_screen_off_hotplug_6 = 65
A percentage of CPU utilization that needs to occur before the core #6 is taken offline while screen is OFF.
down_threshold_screen_off_hotplug_7 = 70
A percentage of CPU utilization that needs to occur before the core #7 is taken offline while screen is OFF.
down_threshold_screen_on = 52
A percentage of CPU utilization that needs to occur before the current Mhz begins to lower while screen is ON.
down_threshold_screen_on_hotplug_1 = 35
A percentage of CPU utilization that needs to occur before the core #1 is taken offline while screen is ON.
down_threshold_screen_on_hotplug_2 = 40
A percentage of CPU utilization that needs to occur before the core #2 is taken offline while screen is ON.
down_threshold_screen_on_hotplug_3 = 45
A percentage of CPU utilization that needs to occur before the core #3 is taken offline while screen is ON.
down_threshold_screen_on_hotplug_4 = 50
A percentage of CPU utilization that needs to occur before the core #4 is taken offline while screen is ON.
down_threshold_screen_on_hotplug_5 = 55
A percentage of CPU utilization that needs to occur before the core #5 is taken offline while screen is ON.
down_threshold_screen_on_hotplug_6 = 60
A percentage of CPU utilization that needs to occur before the core #6 is taken offline while screen is ON.
down_threshold_screen_on_hotplug_7 = 65
A percentage of CPU utilization that needs to occur before the core #7 is taken offline while screen is ON.
freq_step_lower_screen_off = 8
How many steps from the Mhz table (the entire Mhz table can bee seen in the CPU Voltage screen) it skips when lowering the current Mhz while the screen is OFF.
freq_step_lower_screen_on = 2
How many steps from the Mhz table (the entire Mhz table can bee seen in the CPU Voltage screen) it skips when lowering the current Mhz while the screen is ON.
freq_step_raise_screen_off = 1
How many steps from the Mhz table (the entire Mhz table can bee seen in the CPU Voltage screen) it skips when raising the current Mhz while the screen is OFF.
freq_step_raise_screen_on = 5
How many steps from the Mhz table (the entire Mhz table can bee seen in the CPU Voltage screen) it skips when raising the current Mhz while the screen is ON.
ignore_nice_load = 0
If this value is 1, the system will ignore "Nice" processes when deciding to scale up or down. Nice processes are used by the IO scheduler to designate a low-priority process. Ignore nice load basically tells a governor to disregard processes with higher nice values.
lockout_hotplug_screen_off_core_1 = 0
This is a 3 way option. While the screen is OFF, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_on_core_1 = 0
This is a 3 way option. While the screen is ON, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_off_core_2 = 0
This is a 3 way option. While the screen is OFF, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_on_core_2 = 0
This is a 3 way option. While the screen is ON, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_off_core_3 = 0
This is a 3 way option. While the screen is OFF, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_on_core_3 = 0
This is a 3 way option. While the screen is ON, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_off_core_4 = 0
This is a 3 way option. While the screen is OFF, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_on_core_4 = 0
This is a 3 way option. While the screen is ON, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_off_core_5 = 0
This is a 3 way option. While the screen is OFF, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_on_core_5 = 0
This is a 3 way option. While the screen is ON, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_off_core_6 = 0
This is a 3 way option. While the screen is OFF, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_on_core_6 = 0
This is a 3 way option. While the screen is ON, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_off_core_7 = 0
This is a 3 way option. While the screen is OFF, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_on_core_7 = 0
This is a 3 way option. While the screen is ON, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_changes_when_boosting = 0
If this value is 1, all CPU changes to all cores will be ignored while executing a touch/button boost. If 0 all cores will be allowed to scale and hotplug.
no_extra_cores_screen_off = 1
When set to a 1, this option keeps all extra CPU cores offline while the screen is OFF. 0 lets it hotplug them on and off as needed
sampling_rate = 45000
The amount of milliseconds that the governor will analyze the CPU usage and adjust for changes in load while the screen is ON.
sampling_rate_min = 10000
READ-ONLY value that specifies the lower value that "sampling_rate" and "sampling_rate_screen_off" will accept.
sampling_rate_screen_off = 45000
The amount of milliseconds that the governor will analyze the CPU usage and adjust for changes in load while the screen is OFF.
super_conservative_screen_off = 0
With the screen OFF: When set to a 1, this option will explicitly obey your block cycles settings to be a super battery saver (Setting a 1 will slow down the UI a little bit). When set to a 0 it uses fuzzy logic on the "block cycle" items.
super_conservative_screen_on = 0
With the screen ON: When set to a 1, this option will explicitly obey your block cycles settings to be a super battery saver (Setting a 1 will slow down the UI a little bit). When set to a 0 it uses fuzzy logic on the "block cycle" items to create a smooooooth UI experience.
touch_boost_cpu_cl0 = 1200000
The Mhz that you want the online CPU's to jump to when the screen is touched for the the LITTLE CPU (Cluster 0).
touch_boost_cpu_cl1 = 1600000
The Mhz that you want the online CPU's to jump to when the screen is touched for the the BIG CPU (Cluster 1).
touch_boost_core_1 = 1
When set to a 1, this option turns on the core #1 when the screen is touched. When set to a 0 it doesn't do anything extra to the cores.
touch_boost_core_2 = 1
When set to a 1, this option turns on the core #2 when the screen is touched. When set to a 0 it doesn't do anything extra to the cores.
touch_boost_core_3 = 0
When set to a 1, this option turns on the core #3 when the screen is touched. When set to a 0 it doesn't do anything extra to the cores.
touch_boost_core_4 = 0
When set to a 1, this option turns on the core #4 when the screen is touched. When set to a 0 it doesn't do anything extra to the cores.
touch_boost_core_5 = 0
When set to a 1, this option turns on the core #5 when the screen is touched. When set to a 0 it doesn't do anything extra to the cores.
touch_boost_core_6 = 0
When set to a 1, this option turns on the core #6 when the screen is touched. When set to a 0 it doesn't do anything extra to the cores.
touch_boost_core_7 = 0
When set to a 1, this option turns on the core #7 when the screen is touched. When set to a 0 it doesn't do anything extra to the cores.
touch_boost_gpu = 424
This value specifies what Mhz the GPU should jump to when the screen is touched.
up_threshold_screen_off = 57
A percentage of CPU utilization that needs to occur before the current Mhz begins to raise while screen is OFF.
up_threshold_screen_off_hotplug_1 = 55
A percentage of CPU utilization that needs to occur before the core #1 is put online while screen is OFF.
up_threshold_screen_off_hotplug_2 = 60
A percentage of CPU utilization that needs to occur before the core #2 is put online while screen is OFF.
up_threshold_screen_off_hotplug_3 = 65
A percentage of CPU utilization that needs to occur before the core #3 is put online while screen is OFF.
up_threshold_screen_off_hotplug_4 = 70
A percentage of CPU utilization that needs to occur before the core #4 is put online while screen is OFF.
up_threshold_screen_off_hotplug_5 = 75
A percentage of CPU utilization that needs to occur before the core #5 is put online while screen is OFF.
up_threshold_screen_off_hotplug_6 = 80
A percentage of CPU utilization that needs to occur before the core #6 is put online while screen is OFF.
up_threshold_screen_off_hotplug_7 = 85
A percentage of CPU utilization that needs to occur before the core #7 is put online while screen is OFF.
up_threshold_screen_on = 57
A percentage of CPU utilization that needs to occur before the current Mhz begins to raise while screen is ON.
up_threshold_screen_on_hotplug_1 = 50
A percentage of CPU utilization that needs to occur before the core #1 is put online while screen is ON.
up_threshold_screen_on_hotplug_2 = 55
A percentage of CPU utilization that needs to occur before the core #2 is put online while screen is ON.
up_threshold_screen_on_hotplug_3 = 60
A percentage of CPU utilization that needs to occur before the core #3 is put online while screen is ON.
up_threshold_screen_on_hotplug_4 = 60
A percentage of CPU utilization that needs to occur before the core #4 is put online while screen is ON.
up_threshold_screen_on_hotplug_5 = 60
A percentage of CPU utilization that needs to occur before the core #5 is put online while screen is ON.
up_threshold_screen_on_hotplug_6 = 60
A percentage of CPU utilization that needs to occur before the core #6 is put online while screen is ON.
up_threshold_screen_on_hotplug_7 = 60
A percentage of CPU utilization that needs to occur before the core #7 is put online while screen is ON.
Touchwiz Lollipop 5.0 VERSION:
04.19.2015: http://bit.ly/1D1onyj
Click to expand...
Click to collapse
Change Log 04.19.2015
1. First build, things are just getting started
2. Min/Max will look weird upon open KTweaker the first time, just slide the Min and Max bars to what you want, this is only setup for the SMALL CPU.
3. So far you can only control the SMALL CPU which is the cpu that ranges from 400-1500Mhz
4. Control over Scheduler.
5. Control over governor for SMALL CPU.
6. Kernel is setup for SELInux Permissive
7. Lots of dmesg spam removed.
8. Dont bother setting other items in KTweaker just yet since things are just getting started.
9. As with all custom kernels since the S4, you may need to find "securestorage" line in build.prop and change from true to a false if you have trouble with wifi remembering your password after reboots.
10. If you have trouble with S-Health after installing custom kernels, Force Stop it and clear cache/data for the app, that will usually take care of it.
11. Please post a "dmesg" after running the kernel for 10-15 minutes and you have let the phone go into deep sleep at least once so I can remove more dmesg spam.
12. ENJOY the awesome!!!!!!!!!!!!!!!
13. All other G920 variants are welcome to try but G920F is the only one I have confirmation of so far.
14. No this will NOT work on any of the G925 variants since its a totally different device.
Awesome! One more reason for me to get the GS6 when it's available here.
Great and thanks for starting.
Sent from my SM-G920F
Sweet! A kernel already I was wondering about the max clock showing just 1.5 ghz instead of 2.1. It seems that way on stock too already. Surprisingly it actually seemed to hold a lower speed cap I set @ 1296 mhz. Usually stock is like screw you hippie, I do what I want. lol.
I'll give it a try in a day or two on my G920T Tmobile. I have to make a backup first.
Just flashed on my G920W8 and will confirm for those hesitant to flash that deep sleep is happening. Editing securestorage to false is needed to bring back wifi remembering on boot
Edit: No call audio >.>
mrapp said:
Just flashed on my G920W8 and will confirm for those hesitant to flash that deep sleep is happening. Editing securestorage to false is needed to bring back wifi remembering on boot
Edit: No call audio >.>
Click to expand...
Click to collapse
Try the one in the tmobile section and let me know.
ktoonsez said:
Try the one in the tmobile section and let me know.
Click to expand...
Click to collapse
Just realized you posted a T variant right before you posted. The T variant is tested and works perfectly with deep sleep and call audio on my W8
mrapp said:
Just realized you posted a T variant right before you posted. The T variant is tested and works perfectly with deep sleep and call audio on my W8
Click to expand...
Click to collapse
Awesome, I will add W8 to the OP as compatible.
Got any plans to make a sprint compatible version?
nflwideout86 said:
Got any plans to make a sprint compatible version?
Click to expand...
Click to collapse
Had 1 for 2 weeks now but you guys have no deep sleep with custom recovery or root or when you flash a kernel so I saw no point in it
ktoonsez said:
Had 1 for 2 weeks now but you guys have no deep sleep with custom recovery or root or when you flash a kernel so I saw no point in it
Click to expand...
Click to collapse
Hmm...we have deep sleep now since samsung finally released our stock firmware......? Personally i have trwp with deep sleep.
nflwideout86 said:
Hmm...we have deep sleep now since samsung finally released our stock firmware......? Personally i have trwp with deep sleep.
Click to expand...
Click to collapse
You also need root or KTweaker wont work. Ill PM u a link, your welcome to try.
ktoonsez said:
You also need root or KTweaker wont work. Ill PM u a link, your welcome to try.
Click to expand...
Click to collapse
Awesome man i'll try it out. I rooted with the tmo auto root and it seems to be working so far, all my other root apps work as they should
---------- Post added at 11:00 PM ---------- Previous post was at 10:12 PM ----------
ktoonsez said:
You also need root or KTweaker wont work. Ill PM u a link, your welcome to try.
Click to expand...
Click to collapse
So i just tested it out and everything seems good, the device deep sleeps just fine. :good:
Hi @ktoonsez congrats on your first S6 release!
Here you have an better dmesg log of an 10 minute run including deep sleep.
@ktoonsez thanks a lot, I'll try soon.
There's a small error in the op, it says "KT-SGS5 kernel features" instead of KT-SGS6
Good luck for the development
Question what is the difference between this kernel and the one you posted yesterday for the 920f ?
edgarf28 said:
Hi @ktoonsez congrats on your first S6 release!
Here you have an better dmesg log of an 10 minute run including deep sleep.
Click to expand...
Click to collapse
How did you get that log? KTweaker closes itself instantly for me?
Ktoonsez presents:
{
"lightbox_close": "Close",
"lightbox_next": "Next",
"lightbox_previous": "Previous",
"lightbox_error": "The requested content cannot be loaded. Please try again later.",
"lightbox_start_slideshow": "Start slideshow",
"lightbox_stop_slideshow": "Stop slideshow",
"lightbox_full_screen": "Full screen",
"lightbox_thumbnails": "Thumbnails",
"lightbox_download": "Download",
"lightbox_share": "Share",
"lightbox_zoom": "Zoom",
"lightbox_new_window": "New window",
"lightbox_toggle_sidebar": "Toggle sidebar"
}
KT-SGS6 kernel features
•Must have a S6 model G920F and G920I and G920S and G920T and G925F and G925I and G925S and G925T
•Samsung open source
•Optimized kernel configuration
•unsecure root adb
•Voltage interface
•Over Clocking
•Under Clocking
•KTweaker app for kernel control
•KTweaker Widgets
•KTmonitor app to watch your cpu cores current speed
Click to expand...
Click to collapse
KTweaker Shop and profile help, plus previous versions can be seen here (thanks to LuigiBull23):
http://forum.xda-developers.com/tmo...nel-kt-sgs6-builds-variants-ktweaker-t3107867
Touchwiz Lollipop 5.0 VERSION:
06.22.2015: http://bit.ly/1Jf6B2n
Click to expand...
Click to collapse
KTweaker Shop and profile help, plus previous versions can be seen here (thanks to LuigiBull23):
http://forum.xda-developers.com/tmo...kernel-kt-sgs6e-builds-ktweaker-shop-t3107937
Sources can be found here:
https://github.com/ktoonsez/KTSGS6
What you can expect to get benchmark wise with a good CPU OC'd:
Go to my original thread to view Change logs:
http://forum.xda-developers.com/showpost.php?p=60180784&postcount=2
ktoonservative explained:
Any item with the word cycle in it refers to how many sampling_rate's have occured. A 22 ruffly equates to 1 second for a sampling_rate of 45000
block_cycles_offline_screen_off =1
How many sampling_rate cycles need to occur before a core is allowed to go OFFLINE while the screen is OFF.
block_cycles_offline_screen_on = 11
How many sampling_rate cycles need to occur before a core is allowed to go OFFLINE while the screen is ON.
block_cycles_online_screen_off = 11
How many sampling_rate cycles need to occur before a core is allowed to go ONLINE while the screen is OFF.
block_cycles_online_screen_on = 3
How many sampling_rate cycles need to occur before a core is allowed to go ONLINE while the screen is ON.
block_cycles_raise_screen_off = 11
How many sampling_rate cycles need to occur before the current Mhz is allowed to be raised while the screen is OFF.
block_cycles_raise_screen_on = 3
How many sampling_rate cycles need to occur before the current Mhz is allowed to be raised while the screen is ON.
button_boost_screen_off_core_1 = 1
When this item is a 1, it will turn on the core #1 when a button any hard button is pressed while the screen is OFF. 0 leaves the core in its current state.
button_boost_screen_on_core_1 = 1
When this item is a 1, it will turn on the core #1 when a button any hard button is pressed while the screen is ON. 0 leaves the core in its current state.
button_boost_screen_off_core_2 = 1
When this item is a 1, it will turn on the core #2 when a button any hard button is pressed while the screen is OFF. 0 leaves the core in its current state.
button_boost_screen_on_core_2 = 1
When this item is a 1, it will turn on the core #2 when a button any hard button is pressed while the screen is ON. 0 leaves the core in its current state.
button_boost_screen_off_core_3 = 1
When this item is a 1, it will turn on the core #3 when a button any hard button is pressed while the screen is OFF. 0 leaves the core in its current state.
button_boost_screen_on_core_3 = 1
When this item is a 1, it will turn on the core #3 when a button any hard button is pressed while the screen is ON. 0 leaves the core in its current state.
button_boost_screen_off_core_4 = 1
When this item is a 1, it will turn on the core #4 when a button any hard button is pressed while the screen is OFF. 0 leaves the core in its current state.
button_boost_screen_on_core_4 = 1
When this item is a 1, it will turn on the core #4 when a button any hard button is pressed while the screen is ON. 0 leaves the core in its current state.
button_boost_screen_off_core_5 = 1
When this item is a 1, it will turn on the core #5 when a button any hard button is pressed while the screen is OFF. 0 leaves the core in its current state.
button_boost_screen_on_core_5 = 1
When this item is a 1, it will turn on the core #5 when a button any hard button is pressed while the screen is ON. 0 leaves the core in its current state.
button_boost_screen_off_core_6 = 1
When this item is a 1, it will turn on the core #6 when a button any hard button is pressed while the screen is OFF. 0 leaves the core in its current state.
button_boost_screen_on_core_6 = 1
When this item is a 1, it will turn on the core #6 when a button any hard button is pressed while the screen is ON. 0 leaves the core in its current state.
button_boost_screen_off_core_7 = 1
When this item is a 1, it will turn on the core #7 when a button any hard button is pressed while the screen is OFF. 0 leaves the core in its current state.
button_boost_screen_on_core_7 = 1
When this item is a 1, it will turn on the core #7 when a button any hard button is pressed while the screen is ON. 0 leaves the core in its current state.
boost_hold_cycles = 22
How many sampling_rate cycles need to occur before going out of CPU/GPU boost mode
cpu_load_adder_at_max_gpu = 0
When set to higher than zero, this will add to the actual CPU load to create a perceived higher load when an app is using alot of GPU but not CPU.
cpu_load_adder_at_max_gpu_ignore_tb = 0
When set to 1, this will ignore cpu_load_adder_at_max_gpu during touch/button boost. When set to 0 cpu_load_adder_at_max_gpu will be used all the time.
disable_hotplug = 0
When this item is a 1, it disables hotplugging so all cores stay on full time. 0 lets all cores turn on and off when needed.
disable_hotplug_bt = 0
When this item is a 1, it disables hotplugging so all cores stay on full time while paired to a bluetooth device and doing bluetooth activities like playing music, transfering files.... 0 doesn't do anything extra to the cores when doing bluetooth functions.
disable_hotplug_chrg = 0
When this item is a 1, it disables hotplugging so all cores stay on full time while charging the device. 0 doesn't do anything extra to the cores while charging.
disable_hotplug_media = 0
When this item is a 1, it disables hotplugging so all cores stay on full time while playing music or movies. 0 doesn't do anything extra to the cores while music or movies are playing.
down_threshold_screen_off = 52
A percentage of CPU utilization that needs to occur before the current Mhz begins to lower while screen is OFF.
down_threshold_screen_off_hotplug_1 = 40
A percentage of CPU utilization that needs to occur before the core #1 is taken offline while screen is OFF.
down_threshold_screen_off_hotplug_2 = 45
A percentage of CPU utilization that needs to occur before the core #2 is taken offline while screen is OFF.
down_threshold_screen_off_hotplug_3 = 50
A percentage of CPU utilization that needs to occur before the core #3 is taken offline while screen is OFF.
down_threshold_screen_off_hotplug_4 = 55
A percentage of CPU utilization that needs to occur before the core #4 is taken offline while screen is OFF.
down_threshold_screen_off_hotplug_5 = 60
A percentage of CPU utilization that needs to occur before the core #5 is taken offline while screen is OFF.
down_threshold_screen_off_hotplug_6 = 65
A percentage of CPU utilization that needs to occur before the core #6 is taken offline while screen is OFF.
down_threshold_screen_off_hotplug_7 = 70
A percentage of CPU utilization that needs to occur before the core #7 is taken offline while screen is OFF.
down_threshold_screen_on = 52
A percentage of CPU utilization that needs to occur before the current Mhz begins to lower while screen is ON.
down_threshold_screen_on_hotplug_1 = 35
A percentage of CPU utilization that needs to occur before the core #1 is taken offline while screen is ON.
down_threshold_screen_on_hotplug_2 = 40
A percentage of CPU utilization that needs to occur before the core #2 is taken offline while screen is ON.
down_threshold_screen_on_hotplug_3 = 45
A percentage of CPU utilization that needs to occur before the core #3 is taken offline while screen is ON.
down_threshold_screen_on_hotplug_4 = 50
A percentage of CPU utilization that needs to occur before the core #4 is taken offline while screen is ON.
down_threshold_screen_on_hotplug_5 = 55
A percentage of CPU utilization that needs to occur before the core #5 is taken offline while screen is ON.
down_threshold_screen_on_hotplug_6 = 60
A percentage of CPU utilization that needs to occur before the core #6 is taken offline while screen is ON.
down_threshold_screen_on_hotplug_7 = 65
A percentage of CPU utilization that needs to occur before the core #7 is taken offline while screen is ON.
freq_step_lower_screen_off = 8
How many steps from the Mhz table (the entire Mhz table can bee seen in the CPU Voltage screen) it skips when lowering the current Mhz while the screen is OFF.
freq_step_lower_screen_on = 2
How many steps from the Mhz table (the entire Mhz table can bee seen in the CPU Voltage screen) it skips when lowering the current Mhz while the screen is ON.
freq_step_raise_screen_off = 1
How many steps from the Mhz table (the entire Mhz table can bee seen in the CPU Voltage screen) it skips when raising the current Mhz while the screen is OFF.
freq_step_raise_screen_on = 5
How many steps from the Mhz table (the entire Mhz table can bee seen in the CPU Voltage screen) it skips when raising the current Mhz while the screen is ON.
ignore_nice_load = 0
If this value is 1, the system will ignore "Nice" processes when deciding to scale up or down. Nice processes are used by the IO scheduler to designate a low-priority process. Ignore nice load basically tells a governor to disregard processes with higher nice values.
lockout_hotplug_screen_off_core_1 = 0
This is a 3 way option. While the screen is OFF, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_on_core_1 = 0
This is a 3 way option. While the screen is ON, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_off_core_2 = 0
This is a 3 way option. While the screen is OFF, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_on_core_2 = 0
This is a 3 way option. While the screen is ON, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_off_core_3 = 0
This is a 3 way option. While the screen is OFF, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_on_core_3 = 0
This is a 3 way option. While the screen is ON, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_off_core_4 = 0
This is a 3 way option. While the screen is OFF, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_on_core_4 = 0
This is a 3 way option. While the screen is ON, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_off_core_5 = 0
This is a 3 way option. While the screen is OFF, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_on_core_5 = 0
This is a 3 way option. While the screen is ON, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_off_core_6 = 0
This is a 3 way option. While the screen is OFF, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_on_core_6 = 0
This is a 3 way option. While the screen is ON, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_off_core_7 = 0
This is a 3 way option. While the screen is OFF, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_hotplug_screen_on_core_7 = 0
This is a 3 way option. While the screen is ON, 0 = Hotplug Normal so the core will go on and off as needed, 1 = Lock this core always ON, 2 = Lock this core always OFF.
lockout_changes_when_boosting = 0
If this value is 1, all CPU changes to all cores will be ignored while executing a touch/button boost. If 0 all cores will be allowed to scale and hotplug.
no_extra_cores_screen_off = 1
When set to a 1, this option keeps all extra CPU cores offline while the screen is OFF. 0 lets it hotplug them on and off as needed
sampling_rate = 45000
The amount of milliseconds that the governor will analyze the CPU usage and adjust for changes in load while the screen is ON.
sampling_rate_min = 10000
READ-ONLY value that specifies the lower value that "sampling_rate" and "sampling_rate_screen_off" will accept.
sampling_rate_screen_off = 45000
The amount of milliseconds that the governor will analyze the CPU usage and adjust for changes in load while the screen is OFF.
super_conservative_screen_off = 0
With the screen OFF: When set to a 1, this option will explicitly obey your block cycles settings to be a super battery saver (Setting a 1 will slow down the UI a little bit). When set to a 0 it uses fuzzy logic on the "block cycle" items.
super_conservative_screen_on = 0
With the screen ON: When set to a 1, this option will explicitly obey your block cycles settings to be a super battery saver (Setting a 1 will slow down the UI a little bit). When set to a 0 it uses fuzzy logic on the "block cycle" items to create a smooooooth UI experience.
touch_boost_cpu_cl0 = 1200000
The Mhz that you want the online CPU's to jump to when the screen is touched for the the LITTLE CPU (Cluster 0).
touch_boost_cpu_cl1 = 1600000
The Mhz that you want the online CPU's to jump to when the screen is touched for the the BIG CPU (Cluster 1).
touch_boost_core_1 = 1
When set to a 1, this option turns on the core #1 when the screen is touched. When set to a 0 it doesn't do anything extra to the cores.
touch_boost_core_2 = 1
When set to a 1, this option turns on the core #2 when the screen is touched. When set to a 0 it doesn't do anything extra to the cores.
touch_boost_core_3 = 0
When set to a 1, this option turns on the core #3 when the screen is touched. When set to a 0 it doesn't do anything extra to the cores.
touch_boost_core_4 = 0
When set to a 1, this option turns on the core #4 when the screen is touched. When set to a 0 it doesn't do anything extra to the cores.
touch_boost_core_5 = 0
When set to a 1, this option turns on the core #5 when the screen is touched. When set to a 0 it doesn't do anything extra to the cores.
touch_boost_core_6 = 0
When set to a 1, this option turns on the core #6 when the screen is touched. When set to a 0 it doesn't do anything extra to the cores.
touch_boost_core_7 = 0
When set to a 1, this option turns on the core #7 when the screen is touched. When set to a 0 it doesn't do anything extra to the cores.
touch_boost_gpu = 424
This value specifies what Mhz the GPU should jump to when the screen is touched.
up_threshold_screen_off = 57
A percentage of CPU utilization that needs to occur before the current Mhz begins to raise while screen is OFF.
up_threshold_screen_off_hotplug_1 = 55
A percentage of CPU utilization that needs to occur before the core #1 is put online while screen is OFF.
up_threshold_screen_off_hotplug_2 = 60
A percentage of CPU utilization that needs to occur before the core #2 is put online while screen is OFF.
up_threshold_screen_off_hotplug_3 = 65
A percentage of CPU utilization that needs to occur before the core #3 is put online while screen is OFF.
up_threshold_screen_off_hotplug_4 = 70
A percentage of CPU utilization that needs to occur before the core #4 is put online while screen is OFF.
up_threshold_screen_off_hotplug_5 = 75
A percentage of CPU utilization that needs to occur before the core #5 is put online while screen is OFF.
up_threshold_screen_off_hotplug_6 = 80
A percentage of CPU utilization that needs to occur before the core #6 is put online while screen is OFF.
up_threshold_screen_off_hotplug_7 = 85
A percentage of CPU utilization that needs to occur before the core #7 is put online while screen is OFF.
up_threshold_screen_on = 57
A percentage of CPU utilization that needs to occur before the current Mhz begins to raise while screen is ON.
up_threshold_screen_on_hotplug_1 = 50
A percentage of CPU utilization that needs to occur before the core #1 is put online while screen is ON.
up_threshold_screen_on_hotplug_2 = 55
A percentage of CPU utilization that needs to occur before the core #2 is put online while screen is ON.
up_threshold_screen_on_hotplug_3 = 60
A percentage of CPU utilization that needs to occur before the core #3 is put online while screen is ON.
up_threshold_screen_on_hotplug_4 = 60
A percentage of CPU utilization that needs to occur before the core #4 is put online while screen is ON.
up_threshold_screen_on_hotplug_5 = 60
A percentage of CPU utilization that needs to occur before the core #5 is put online while screen is ON.
up_threshold_screen_on_hotplug_6 = 60
A percentage of CPU utilization that needs to occur before the core #6 is put online while screen is ON.
up_threshold_screen_on_hotplug_7 = 60
A percentage of CPU utilization that needs to occur before the core #7 is put online while screen is ON.
Thank You!!!
Lovely restoring 5.0.2 backup now. Will you add support for 5.1.1 or do you need source?
ktetreault14 said:
Lovely restoring 5.0.2 backup now. Will you add support for 5.1.1 or do you need source?
Click to expand...
Click to collapse
There is no source released by Samsung, will probably take them a few weeks before they post
thanks for making this work on our t mobile edge!:good:
Ktoonsez does it again!
Bravo!
Pp.
NICE!! Your work is all i used back when i was on S4! good things are coming to the s6 edge i see!
thanksss!
---------- Post added at 07:42 AM ---------- Previous post was at 07:41 AM ----------
Question, will this kernel fix the deep sleep bug when having custom recovery installed?
thnaks again bro!
cris_epic said:
NICE!! Your work is all i used back when i was on S4! good things are coming to the s6 edge i see!
thanksss!
---------- Post added at 07:42 AM ---------- Previous post was at 07:41 AM ----------
Question, will this kernel fix the deep sleep bug when having custom recovery installed?
thnaks again bro!
Click to expand...
Click to collapse
Thanks man. It should but cant be sure. I did my part in the kernel so when flashing my kernel you dont loose deep sleep.
So W8 and Tmobile are kind of same device?
brar.arsh said:
So W8 and Tmobile are kind of same device?
Click to expand...
Click to collapse
Yes those 2 are. That's about it for all the different variants.
ktoonsez said:
Yes those 2 are. That's about it for all the different variants.
Click to expand...
Click to collapse
Thanks, will try this.. Can I also install leaked 5.1.1 then if they are same?
Awesome to have you been using ur kernels for a o couple of years now lol. time to flash woot woot
Btw download link seems to be down atm any other mirrors ?
brar.arsh said:
Thanks, will try this.. Can I also install leaked 5.1.1 then if they are same?
Click to expand...
Click to collapse
You can try and let us know. I will see if I can flash the Canadian Videotron 925W8 ROM to my 925T tomorrow. All I want is to sim unlock the damn phone bypassing the T-Mobile unlock app.
Thank you for taking the time to make this kernal on T-mobile. Super stoked!
Thanks a lot for the kernel ktoonsez! Exactly what I wanted to see, especially in the app. I know there are many more things to come. Don't know if you remember me from the sgs3 days, we worked together on some small kernel issues with a couple other devs. I developed roms on the sgs3 and hope to jump into the scene with sgs6e.
Sent from my SM-G925T using XDA Free mobile app
Running smooth. Really glad for something to flash on this bad boy. Thanks.☺
Word
Best battery life yet! Thanks for the kernel. Just came from the Oneplus One ( I know I know.. Hehe ) and ran your kernel on that since day one. Glad to have you supporting the s6 edge! Thanks!
Touchwiz Lollipop 5.0 VERSION:
05.04.2015: http://bit.ly/1QgSQQZ
Click to expand...
Click to collapse
Change Log 05.04.2015
1. Add all the TCP congestion option from my S5
2. Added BFQ scheduler
3. Added FIOPS scheduler
4. Fix permissions issues with interactive tunables
5. Fix some set on boot issues where certain options were not getting set.
6. KTmonitor now shows all 8 cores
7. Added "ASV Info" to KTweaker->Get Phone Information screen so you can see your CPU "bin"
8. There was some other stuff I cant remember, enjoy the awesome
I have a A505FN with the rom A505FNXXS4BTCA - XEF. I flashed my device with the TWRP patched and the custom splash screen.
It was a success because I'm rooted now, but not whitout problem.
Since I have an important border on my device.
https://zupimages.net/up/20/20/uvwe.jpg
I have for example + 8mm of border on the bottom of the screen..And I can't remove it.
It's an important problem. I restored the rom stock, but the border remained... Could you help me ?
I taped the commande in adb dumpsys display | grep mBaseDisplayInfo
The answer is:
mBaseDisplayInfo=DisplayInfo{"Écran intégré, displayId 0", uniqueId "local:0", app 1080 x 2340, real 1080 x 2340, largest app 1080 x 2340, smallest app 1080 x 2340, mode 1, defaultMode 1, modes [{id=1, width=1080, height=2340, fps=60.000004}], colorMode 0, supportedColorModes [0], hdrCapabilities [email protected], rotation 0, density 420 (403.411 x 404.326) dpi, layerStack 0, appVsyncOff 0, presDeadline 17666666, type BUILT_IN, address {port=0}, state DOZE_SUSPEND, FLAG_SECURE, FLAG_SUPPORTS_PROTECTED_BUFFERS, removeMode 0}
Thank you
It seems to be normal for me, may it be you had a dark background image before? 8mm including the navigation bar? You can put your phone under some ligth and see the reel edges of the screen, if you see an extra black border then you have a problem .there is ~3mm buttom border in the A50 .
Looks normal to me